Metamath Proof Explorer


Theorem dvheveccl

Description: Properties of a unit vector that we will use later as a convenient reference vector. This vector is called "e" in the remark after Lemma M of Crawley p. 121. line 17. See also dvhopN and dihpN . (Contributed by NM, 27-Mar-2015)

Ref Expression
Hypotheses dvheveccl.h H = LHyp K
dvheveccl.b B = Base K
dvheveccl.t T = LTrn K W
dvheveccl.u U = DVecH K W
dvheveccl.v V = Base U
dvheveccl.z 0 ˙ = 0 U
dvheveccl.e E = I B I T
dvheveccl.k φ K HL W H
Assertion dvheveccl φ E V 0 ˙

Proof

Step Hyp Ref Expression
1 dvheveccl.h H = LHyp K
2 dvheveccl.b B = Base K
3 dvheveccl.t T = LTrn K W
4 dvheveccl.u U = DVecH K W
5 dvheveccl.v V = Base U
6 dvheveccl.z 0 ˙ = 0 U
7 dvheveccl.e E = I B I T
8 dvheveccl.k φ K HL W H
9 2 1 3 idltrn K HL W H I B T
10 8 9 syl φ I B T
11 eqid TEndo K W = TEndo K W
12 1 3 11 tendoidcl K HL W H I T TEndo K W
13 8 12 syl φ I T TEndo K W
14 1 3 11 4 5 dvhelvbasei K HL W H I B T I T TEndo K W I B I T V
15 8 10 13 14 syl12anc φ I B I T V
16 eqid f T I B = f T I B
17 2 1 3 11 16 tendo1ne0 K HL W H I T f T I B
18 8 17 syl φ I T f T I B
19 2 1 3 4 6 16 dvh0g K HL W H 0 ˙ = I B f T I B
20 8 19 syl φ 0 ˙ = I B f T I B
21 eqtr I B I T = 0 ˙ 0 ˙ = I B f T I B I B I T = I B f T I B
22 opthg I B T I T TEndo K W I B I T = I B f T I B I B = I B I T = f T I B
23 10 13 22 syl2anc φ I B I T = I B f T I B I B = I B I T = f T I B
24 simpr I B = I B I T = f T I B I T = f T I B
25 23 24 syl6bi φ I B I T = I B f T I B I T = f T I B
26 21 25 syl5 φ I B I T = 0 ˙ 0 ˙ = I B f T I B I T = f T I B
27 20 26 mpan2d φ I B I T = 0 ˙ I T = f T I B
28 27 necon3d φ I T f T I B I B I T 0 ˙
29 18 28 mpd φ I B I T 0 ˙
30 eldifsn I B I T V 0 ˙ I B I T V I B I T 0 ˙
31 15 29 30 sylanbrc φ I B I T V 0 ˙
32 7 31 eqeltrid φ E V 0 ˙