Metamath Proof Explorer


Theorem dvid

Description: Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvid D I = × 1

Proof

Step Hyp Ref Expression
1 f1oi I : 1-1 onto
2 f1of I : 1-1 onto I :
3 1 2 mp1i I :
4 simp2 x z z x z
5 simp1 x z z x x
6 4 5 subcld x z z x z x
7 simp3 x z z x z x
8 4 5 7 subne0d x z z x z x 0
9 fvresi z I z = z
10 fvresi x I x = x
11 9 10 oveqan12rd x z I z I x = z x
12 11 3adant3 x z z x I z I x = z x
13 6 8 12 diveq1bd x z z x I z I x z x = 1
14 13 adantl x z z x I z I x z x = 1
15 ax-1cn 1
16 3 14 15 dvidlem D I = × 1
17 16 mptru D I = × 1