| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvidlem.1 |
|
| 2 |
|
dvidlem.2 |
|
| 3 |
|
dvidlem.3 |
|
| 4 |
|
dvfcn |
|
| 5 |
|
ssidd |
|
| 6 |
5 1 5
|
dvbss |
|
| 7 |
|
reldv |
|
| 8 |
|
simpr |
|
| 9 |
|
eqid |
|
| 10 |
9
|
cnfldtop |
|
| 11 |
|
unicntop |
|
| 12 |
11
|
ntrtop |
|
| 13 |
10 12
|
ax-mp |
|
| 14 |
8 13
|
eleqtrrdi |
|
| 15 |
|
limcresi |
|
| 16 |
|
ssidd |
|
| 17 |
|
cncfmptc |
|
| 18 |
3 16 16 17
|
mp3an2i |
|
| 19 |
|
eqidd |
|
| 20 |
18 8 19
|
cnmptlimc |
|
| 21 |
15 20
|
sselid |
|
| 22 |
|
eldifsn |
|
| 23 |
2
|
3exp2 |
|
| 24 |
23
|
imp43 |
|
| 25 |
22 24
|
sylan2b |
|
| 26 |
25
|
mpteq2dva |
|
| 27 |
|
difss |
|
| 28 |
|
resmpt |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
26 29
|
eqtr4di |
|
| 31 |
30
|
oveq1d |
|
| 32 |
21 31
|
eleqtrrd |
|
| 33 |
9
|
cnfldtopon |
|
| 34 |
33
|
toponrestid |
|
| 35 |
|
eqid |
|
| 36 |
1
|
adantr |
|
| 37 |
34 9 35 16 36 16
|
eldv |
|
| 38 |
14 32 37
|
mpbir2and |
|
| 39 |
|
releldm |
|
| 40 |
7 38 39
|
sylancr |
|
| 41 |
6 40
|
eqelssd |
|
| 42 |
41
|
feq2d |
|
| 43 |
4 42
|
mpbii |
|
| 44 |
43
|
ffnd |
|
| 45 |
|
fnconstg |
|
| 46 |
3 45
|
mp1i |
|
| 47 |
|
ffun |
|
| 48 |
4 47
|
mp1i |
|
| 49 |
|
funbrfvb |
|
| 50 |
48 40 49
|
syl2anc |
|
| 51 |
38 50
|
mpbird |
|
| 52 |
3
|
a1i |
|
| 53 |
|
fvconst2g |
|
| 54 |
52 53
|
sylan |
|
| 55 |
51 54
|
eqtr4d |
|
| 56 |
44 46 55
|
eqfnfvd |
|