Metamath Proof Explorer


Theorem dvivth

Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses dvivth.1 φ M A B
dvivth.2 φ N A B
dvivth.3 φ F : A B cn
dvivth.4 φ dom F = A B
Assertion dvivth φ F M F N ran F

Proof

Step Hyp Ref Expression
1 dvivth.1 φ M A B
2 dvivth.2 φ N A B
3 dvivth.3 φ F : A B cn
4 dvivth.4 φ dom F = A B
5 1 adantr φ M < N x F M F N M A B
6 2 adantr φ M < N x F M F N N A B
7 cncff F : A B cn F : A B
8 3 7 syl φ F : A B
9 8 ffvelrnda φ w A B F w
10 9 renegcld φ w A B F w
11 10 fmpttd φ w A B F w : A B
12 ax-resscn
13 ssid
14 cncfss A B cn A B cn
15 12 13 14 mp2an A B cn A B cn
16 15 3 sselid φ F : A B cn
17 eqid w A B F w = w A B F w
18 17 negfcncf F : A B cn w A B F w : A B cn
19 16 18 syl φ w A B F w : A B cn
20 cncffvrn w A B F w : A B cn w A B F w : A B cn w A B F w : A B
21 12 19 20 sylancr φ w A B F w : A B cn w A B F w : A B
22 11 21 mpbird φ w A B F w : A B cn
23 22 adantr φ M < N x F M F N w A B F w : A B cn
24 reelprrecn
25 24 a1i φ M < N x F M F N
26 8 adantr φ M < N x F M F N F : A B
27 26 ffvelrnda φ M < N x F M F N w A B F w
28 27 recnd φ M < N x F M F N w A B F w
29 fvexd φ M < N x F M F N w A B F w V
30 26 feqmptd φ M < N x F M F N F = w A B F w
31 30 oveq2d φ M < N x F M F N D F = dw A B F w d w
32 ioossre A B
33 dvfre F : A B A B F : dom F
34 8 32 33 sylancl φ F : dom F
35 4 feq2d φ F : dom F F : A B
36 34 35 mpbid φ F : A B
37 36 adantr φ M < N x F M F N F : A B
38 37 feqmptd φ M < N x F M F N D F = w A B F w
39 31 38 eqtr3d φ M < N x F M F N dw A B F w d w = w A B F w
40 25 28 29 39 dvmptneg φ M < N x F M F N dw A B F w d w = w A B F w
41 40 dmeqd φ M < N x F M F N dom dw A B F w d w = dom w A B F w
42 dmmptg w A B F w V dom w A B F w = A B
43 negex F w V
44 43 a1i w A B F w V
45 42 44 mprg dom w A B F w = A B
46 41 45 eqtrdi φ M < N x F M F N dom dw A B F w d w = A B
47 simprl φ M < N x F M F N M < N
48 simprr φ M < N x F M F N x F M F N
49 36 1 ffvelrnd φ F M
50 49 adantr φ M < N x F M F N F M
51 2 4 eleqtrrd φ N dom F
52 34 51 ffvelrnd φ F N
53 52 adantr φ M < N x F M F N F N
54 iccssre F M F N F M F N
55 49 52 54 syl2anc φ F M F N
56 55 adantr φ M < N x F M F N F M F N
57 56 48 sseldd φ M < N x F M F N x
58 iccneg F M F N x x F M F N x F N F M
59 50 53 57 58 syl3anc φ M < N x F M F N x F M F N x F N F M
60 48 59 mpbid φ M < N x F M F N x F N F M
61 40 fveq1d φ M < N x F M F N dw A B F w d w N = w A B F w N
62 fveq2 w = N F w = F N
63 62 negeqd w = N F w = F N
64 eqid w A B F w = w A B F w
65 negex F N V
66 63 64 65 fvmpt N A B w A B F w N = F N
67 6 66 syl φ M < N x F M F N w A B F w N = F N
68 61 67 eqtrd φ M < N x F M F N dw A B F w d w N = F N
69 40 fveq1d φ M < N x F M F N dw A B F w d w M = w A B F w M
70 fveq2 w = M F w = F M
71 70 negeqd w = M F w = F M
72 negex F M V
73 71 64 72 fvmpt M A B w A B F w M = F M
74 5 73 syl φ M < N x F M F N w A B F w M = F M
75 69 74 eqtrd φ M < N x F M F N dw A B F w d w M = F M
76 68 75 oveq12d φ M < N x F M F N dw A B F w d w N dw A B F w d w M = F N F M
77 60 76 eleqtrrd φ M < N x F M F N x dw A B F w d w N dw A B F w d w M
78 eqid y A B w A B F w y x y = y A B w A B F w y x y
79 5 6 23 46 47 77 78 dvivthlem2 φ M < N x F M F N x ran dw A B F w d w
80 40 rneqd φ M < N x F M F N ran dw A B F w d w = ran w A B F w
81 79 80 eleqtrd φ M < N x F M F N x ran w A B F w
82 negex x V
83 64 elrnmpt x V x ran w A B F w w A B x = F w
84 82 83 ax-mp x ran w A B F w w A B x = F w
85 81 84 sylib φ M < N x F M F N w A B x = F w
86 57 recnd φ M < N x F M F N x
87 86 adantr φ M < N x F M F N w A B x
88 25 28 29 39 dvmptcl φ M < N x F M F N w A B F w
89 87 88 neg11ad φ M < N x F M F N w A B x = F w x = F w
90 eqcom x = F w F w = x
91 89 90 bitrdi φ M < N x F M F N w A B x = F w F w = x
92 91 rexbidva φ M < N x F M F N w A B x = F w w A B F w = x
93 85 92 mpbid φ M < N x F M F N w A B F w = x
94 37 ffnd φ M < N x F M F N F Fn A B
95 fvelrnb F Fn A B x ran F w A B F w = x
96 94 95 syl φ M < N x F M F N x ran F w A B F w = x
97 93 96 mpbird φ M < N x F M F N x ran F
98 97 expr φ M < N x F M F N x ran F
99 98 ssrdv φ M < N F M F N ran F
100 fveq2 M = N F M = F N
101 100 oveq1d M = N F M F N = F N F N
102 52 rexrd φ F N *
103 iccid F N * F N F N = F N
104 102 103 syl φ F N F N = F N
105 101 104 sylan9eqr φ M = N F M F N = F N
106 34 ffnd φ F Fn dom F
107 fnfvelrn F Fn dom F N dom F F N ran F
108 106 51 107 syl2anc φ F N ran F
109 108 snssd φ F N ran F
110 109 adantr φ M = N F N ran F
111 105 110 eqsstrd φ M = N F M F N ran F
112 2 adantr φ N < M x F M F N N A B
113 1 adantr φ N < M x F M F N M A B
114 3 adantr φ N < M x F M F N F : A B cn
115 4 adantr φ N < M x F M F N dom F = A B
116 simprl φ N < M x F M F N N < M
117 simprr φ N < M x F M F N x F M F N
118 eqid y A B F y x y = y A B F y x y
119 112 113 114 115 116 117 118 dvivthlem2 φ N < M x F M F N x ran F
120 119 expr φ N < M x F M F N x ran F
121 120 ssrdv φ N < M F M F N ran F
122 32 1 sselid φ M
123 32 2 sselid φ N
124 122 123 lttri4d φ M < N M = N N < M
125 99 111 121 124 mpjao3dan φ F M F N ran F