Metamath Proof Explorer


Theorem dvivthlem1

Description: Lemma for dvivth . (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses dvivth.1 φ M A B
dvivth.2 φ N A B
dvivth.3 φ F : A B cn
dvivth.4 φ dom F = A B
dvivth.5 φ M < N
dvivth.6 φ C F N F M
dvivth.7 G = y A B F y C y
Assertion dvivthlem1 φ x M N F x = C

Proof

Step Hyp Ref Expression
1 dvivth.1 φ M A B
2 dvivth.2 φ N A B
3 dvivth.3 φ F : A B cn
4 dvivth.4 φ dom F = A B
5 dvivth.5 φ M < N
6 dvivth.6 φ C F N F M
7 dvivth.7 G = y A B F y C y
8 ioossre A B
9 8 1 sselid φ M
10 8 2 sselid φ N
11 9 10 5 ltled φ M N
12 cncff F : A B cn F : A B
13 3 12 syl φ F : A B
14 13 ffvelrnda φ y A B F y
15 dvfre F : A B A B F : dom F
16 13 8 15 sylancl φ F : dom F
17 2 4 eleqtrrd φ N dom F
18 16 17 ffvelrnd φ F N
19 1 4 eleqtrrd φ M dom F
20 16 19 ffvelrnd φ F M
21 iccssre F N F M F N F M
22 18 20 21 syl2anc φ F N F M
23 22 6 sseldd φ C
24 23 adantr φ y A B C
25 8 a1i φ A B
26 25 sselda φ y A B y
27 24 26 remulcld φ y A B C y
28 14 27 resubcld φ y A B F y C y
29 28 7 fmptd φ G : A B
30 iccssioo2 M A B N A B M N A B
31 1 2 30 syl2anc φ M N A B
32 29 31 fssresd φ G M N : M N
33 ax-resscn
34 33 a1i φ
35 fss G : A B G : A B
36 29 33 35 sylancl φ G : A B
37 7 oveq2i D G = dy A B F y C y d y
38 reelprrecn
39 38 a1i φ
40 14 recnd φ y A B F y
41 4 feq2d φ F : dom F F : A B
42 16 41 mpbid φ F : A B
43 42 ffvelrnda φ y A B F y
44 13 feqmptd φ F = y A B F y
45 44 oveq2d φ D F = dy A B F y d y
46 42 feqmptd φ D F = y A B F y
47 45 46 eqtr3d φ dy A B F y d y = y A B F y
48 27 recnd φ y A B C y
49 remulcl C y C y
50 23 49 sylan φ y C y
51 50 recnd φ y C y
52 23 adantr φ y C
53 34 sselda φ y y
54 1cnd φ y 1
55 39 dvmptid φ dy y d y = y 1
56 23 recnd φ C
57 39 53 54 55 56 dvmptcmul φ dy C y d y = y C 1
58 56 mulid1d φ C 1 = C
59 58 mpteq2dv φ y C 1 = y C
60 57 59 eqtrd φ dy C y d y = y C
61 eqid TopOpen fld = TopOpen fld
62 61 tgioo2 topGen ran . = TopOpen fld 𝑡
63 iooretop A B topGen ran .
64 63 a1i φ A B topGen ran .
65 39 51 52 60 25 62 61 64 dvmptres φ dy A B C y d y = y A B C
66 39 40 43 47 48 24 65 dvmptsub φ dy A B F y C y d y = y A B F y C
67 37 66 eqtrid φ D G = y A B F y C
68 67 dmeqd φ dom G = dom y A B F y C
69 dmmptg y A B F y C V dom y A B F y C = A B
70 ovex F y C V
71 70 a1i y A B F y C V
72 69 71 mprg dom y A B F y C = A B
73 68 72 eqtrdi φ dom G = A B
74 dvcn G : A B A B dom G = A B G : A B cn
75 34 36 25 73 74 syl31anc φ G : A B cn
76 rescncf M N A B G : A B cn G M N : M N cn
77 31 75 76 sylc φ G M N : M N cn
78 cncffvrn G M N : M N cn G M N : M N cn G M N : M N
79 33 77 78 sylancr φ G M N : M N cn G M N : M N
80 32 79 mpbird φ G M N : M N cn
81 9 10 11 80 evthicc φ x M N z M N G M N z G M N x x M N z M N G M N x G M N z
82 81 simpld φ x M N z M N G M N z G M N x
83 fvres z M N G M N z = G z
84 fvres x M N G M N x = G x
85 83 84 breqan12rd x M N z M N G M N z G M N x G z G x
86 85 ralbidva x M N z M N G M N z G M N x z M N G z G x
87 86 adantl φ x M N z M N G M N z G M N x z M N G z G x
88 ioossicc M N M N
89 ssralv M N M N z M N G z G x z M N G z G x
90 88 89 ax-mp z M N G z G x z M N G z G x
91 87 90 syl6bi φ x M N z M N G M N z G M N x z M N G z G x
92 31 sselda φ x M N x A B
93 42 ffvelrnda φ x A B F x
94 92 93 syldan φ x M N F x
95 94 recnd φ x M N F x
96 95 adantr φ x M N x M N z M N G z G x F x
97 56 ad2antrr φ x M N x M N z M N G z G x C
98 67 fveq1d φ G x = y A B F y C x
99 98 adantr φ x M N G x = y A B F y C x
100 fveq2 y = x F y = F x
101 100 oveq1d y = x F y C = F x C
102 eqid y A B F y C = y A B F y C
103 ovex F x C V
104 101 102 103 fvmpt x A B y A B F y C x = F x C
105 92 104 syl φ x M N y A B F y C x = F x C
106 99 105 eqtrd φ x M N G x = F x C
107 106 adantr φ x M N x M N z M N G z G x G x = F x C
108 29 ad2antrr φ x M N x M N z M N G z G x G : A B
109 8 a1i φ x M N x M N z M N G z G x A B
110 simprl φ x M N x M N z M N G z G x x M N
111 88 31 sstrid φ M N A B
112 111 ad2antrr φ x M N x M N z M N G z G x M N A B
113 92 adantr φ x M N x M N z M N G z G x x A B
114 73 ad2antrr φ x M N x M N z M N G z G x dom G = A B
115 113 114 eleqtrrd φ x M N x M N z M N G z G x x dom G
116 simprr φ x M N x M N z M N G z G x z M N G z G x
117 fveq2 z = w G z = G w
118 117 breq1d z = w G z G x G w G x
119 118 cbvralvw z M N G z G x w M N G w G x
120 116 119 sylib φ x M N x M N z M N G z G x w M N G w G x
121 108 109 110 112 115 120 dvferm φ x M N x M N z M N G z G x G x = 0
122 107 121 eqtr3d φ x M N x M N z M N G z G x F x C = 0
123 96 97 122 subeq0d φ x M N x M N z M N G z G x F x = C
124 123 exp32 φ x M N x M N z M N G z G x F x = C
125 vex x V
126 125 elpr x M N x = M x = N
127 106 adantr φ x M N x = M z M N G z G x G x = F x C
128 29 ad2antrr φ x M N x = M z M N G z G x G : A B
129 8 a1i φ x M N x = M z M N G z G x A B
130 simprl φ x M N x = M z M N G z G x x = M
131 eliooord M A B A < M M < B
132 1 131 syl φ A < M M < B
133 132 simpld φ A < M
134 ne0i M A B A B
135 ndmioo ¬ A * B * A B =
136 135 necon1ai A B A * B *
137 1 134 136 3syl φ A * B *
138 137 simpld φ A *
139 10 rexrd φ N *
140 elioo2 A * N * M A N M A < M M < N
141 138 139 140 syl2anc φ M A N M A < M M < N
142 9 133 5 141 mpbir3and φ M A N
143 142 ad2antrr φ x M N x = M z M N G z G x M A N
144 130 143 eqeltrd φ x M N x = M z M N G z G x x A N
145 137 simprd φ B *
146 eliooord N A B A < N N < B
147 2 146 syl φ A < N N < B
148 147 simprd φ N < B
149 139 145 148 xrltled φ N B
150 iooss2 B * N B A N A B
151 145 149 150 syl2anc φ A N A B
152 151 ad2antrr φ x M N x = M z M N G z G x A N A B
153 92 adantr φ x M N x = M z M N G z G x x A B
154 73 ad2antrr φ x M N x = M z M N G z G x dom G = A B
155 153 154 eleqtrrd φ x M N x = M z M N G z G x x dom G
156 simprr φ x M N x = M z M N G z G x z M N G z G x
157 156 119 sylib φ x M N x = M z M N G z G x w M N G w G x
158 130 oveq1d φ x M N x = M z M N G z G x x N = M N
159 158 raleqdv φ x M N x = M z M N G z G x w x N G w G x w M N G w G x
160 157 159 mpbird φ x M N x = M z M N G z G x w x N G w G x
161 128 129 144 152 155 160 dvferm1 φ x M N x = M z M N G z G x G x 0
162 127 161 eqbrtrrd φ x M N x = M z M N G z G x F x C 0
163 94 adantr φ x M N x = M z M N G z G x F x
164 23 ad2antrr φ x M N x = M z M N G z G x C
165 163 164 suble0d φ x M N x = M z M N G z G x F x C 0 F x C
166 162 165 mpbid φ x M N x = M z M N G z G x F x C
167 elicc2 F N F M C F N F M C F N C C F M
168 18 20 167 syl2anc φ C F N F M C F N C C F M
169 6 168 mpbid φ C F N C C F M
170 169 simp3d φ C F M
171 170 ad2antrr φ x M N x = M z M N G z G x C F M
172 130 fveq2d φ x M N x = M z M N G z G x F x = F M
173 171 172 breqtrrd φ x M N x = M z M N G z G x C F x
174 163 164 letri3d φ x M N x = M z M N G z G x F x = C F x C C F x
175 166 173 174 mpbir2and φ x M N x = M z M N G z G x F x = C
176 175 exp32 φ x M N x = M z M N G z G x F x = C
177 simprl φ x M N x = N z M N G z G x x = N
178 177 fveq2d φ x M N x = N z M N G z G x F x = F N
179 169 simp2d φ F N C
180 179 ad2antrr φ x M N x = N z M N G z G x F N C
181 178 180 eqbrtrd φ x M N x = N z M N G z G x F x C
182 29 ad2antrr φ x M N x = N z M N G z G x G : A B
183 8 a1i φ x M N x = N z M N G z G x A B
184 9 rexrd φ M *
185 elioo2 M * B * N M B N M < N N < B
186 184 145 185 syl2anc φ N M B N M < N N < B
187 10 5 148 186 mpbir3and φ N M B
188 187 ad2antrr φ x M N x = N z M N G z G x N M B
189 177 188 eqeltrd φ x M N x = N z M N G z G x x M B
190 138 184 133 xrltled φ A M
191 iooss1 A * A M M B A B
192 138 190 191 syl2anc φ M B A B
193 192 ad2antrr φ x M N x = N z M N G z G x M B A B
194 92 adantr φ x M N x = N z M N G z G x x A B
195 73 ad2antrr φ x M N x = N z M N G z G x dom G = A B
196 194 195 eleqtrrd φ x M N x = N z M N G z G x x dom G
197 simprr φ x M N x = N z M N G z G x z M N G z G x
198 197 119 sylib φ x M N x = N z M N G z G x w M N G w G x
199 177 oveq2d φ x M N x = N z M N G z G x M x = M N
200 199 raleqdv φ x M N x = N z M N G z G x w M x G w G x w M N G w G x
201 198 200 mpbird φ x M N x = N z M N G z G x w M x G w G x
202 182 183 189 193 196 201 dvferm2 φ x M N x = N z M N G z G x 0 G x
203 106 adantr φ x M N x = N z M N G z G x G x = F x C
204 202 203 breqtrd φ x M N x = N z M N G z G x 0 F x C
205 94 adantr φ x M N x = N z M N G z G x F x
206 23 ad2antrr φ x M N x = N z M N G z G x C
207 205 206 subge0d φ x M N x = N z M N G z G x 0 F x C C F x
208 204 207 mpbid φ x M N x = N z M N G z G x C F x
209 205 206 letri3d φ x M N x = N z M N G z G x F x = C F x C C F x
210 181 208 209 mpbir2and φ x M N x = N z M N G z G x F x = C
211 210 exp32 φ x M N x = N z M N G z G x F x = C
212 176 211 jaod φ x M N x = M x = N z M N G z G x F x = C
213 126 212 syl5bi φ x M N x M N z M N G z G x F x = C
214 elun x M N M N x M N x M N
215 prunioo M * N * M N M N M N = M N
216 184 139 11 215 syl3anc φ M N M N = M N
217 216 eleq2d φ x M N M N x M N
218 214 217 bitr3id φ x M N x M N x M N
219 218 biimpar φ x M N x M N x M N
220 124 213 219 mpjaod φ x M N z M N G z G x F x = C
221 91 220 syld φ x M N z M N G M N z G M N x F x = C
222 221 reximdva φ x M N z M N G M N z G M N x x M N F x = C
223 82 222 mpd φ x M N F x = C