Metamath Proof Explorer


Theorem dvivthlem2

Description: Lemma for dvivth . (Contributed by Mario Carneiro, 20-Feb-2015)

Ref Expression
Hypotheses dvivth.1 φ M A B
dvivth.2 φ N A B
dvivth.3 φ F : A B cn
dvivth.4 φ dom F = A B
dvivth.5 φ M < N
dvivth.6 φ C F N F M
dvivth.7 G = y A B F y C y
Assertion dvivthlem2 φ C ran F

Proof

Step Hyp Ref Expression
1 dvivth.1 φ M A B
2 dvivth.2 φ N A B
3 dvivth.3 φ F : A B cn
4 dvivth.4 φ dom F = A B
5 dvivth.5 φ M < N
6 dvivth.6 φ C F N F M
7 dvivth.7 G = y A B F y C y
8 1 2 3 4 5 6 7 dvivthlem1 φ x M N F x = C
9 dvf F : dom F
10 4 feq2d φ F : dom F F : A B
11 9 10 mpbii φ F : A B
12 11 ffnd φ F Fn A B
13 iccssioo2 M A B N A B M N A B
14 1 2 13 syl2anc φ M N A B
15 14 sselda φ x M N x A B
16 fnfvelrn F Fn A B x A B F x ran F
17 12 15 16 syl2an2r φ x M N F x ran F
18 eleq1 F x = C F x ran F C ran F
19 17 18 syl5ibcom φ x M N F x = C C ran F
20 19 rexlimdva φ x M N F x = C C ran F
21 8 20 mpd φ C ran F