Metamath Proof Explorer


Theorem dvlem

Description: Closure for a difference quotient. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvlem.1 φ F : D
dvlem.2 φ D
dvlem.3 φ B D
Assertion dvlem φ A D B F A F B A B

Proof

Step Hyp Ref Expression
1 dvlem.1 φ F : D
2 dvlem.2 φ D
3 dvlem.3 φ B D
4 eldifsn A D B A D A B
5 1 adantr φ A D A B F : D
6 simprl φ A D A B A D
7 5 6 ffvelrnd φ A D A B F A
8 3 adantr φ A D A B B D
9 5 8 ffvelrnd φ A D A B F B
10 7 9 subcld φ A D A B F A F B
11 2 adantr φ A D A B D
12 11 6 sseldd φ A D A B A
13 11 8 sseldd φ A D A B B
14 12 13 subcld φ A D A B A B
15 simprr φ A D A B A B
16 12 13 15 subne0d φ A D A B A B 0
17 10 14 16 divcld φ A D A B F A F B A B
18 4 17 sylan2b φ A D B F A F B A B