Metamath Proof Explorer


Theorem dvlog2

Description: The derivative of the complex logarithm function on the open unit ball centered at 1 , a sometimes easier region to work with than the CC \ ( -oo , 0 ] of dvlog . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypothesis dvlog2.s S = 1 ball abs 1
Assertion dvlog2 D log S = x S 1 x

Proof

Step Hyp Ref Expression
1 dvlog2.s S = 1 ball abs 1
2 ssid
3 logf1o log : 0 1-1 onto ran log
4 f1of log : 0 1-1 onto ran log log : 0 ran log
5 3 4 ax-mp log : 0 ran log
6 logrncn x ran log x
7 6 ssriv ran log
8 fss log : 0 ran log ran log log : 0
9 5 7 8 mp2an log : 0
10 eqid −∞ 0 = −∞ 0
11 10 logdmss −∞ 0 0
12 fssres log : 0 −∞ 0 0 log −∞ 0 : −∞ 0
13 9 11 12 mp2an log −∞ 0 : −∞ 0
14 difss −∞ 0
15 cnxmet abs ∞Met
16 ax-1cn 1
17 1xr 1 *
18 blssm abs ∞Met 1 1 * 1 ball abs 1
19 15 16 17 18 mp3an 1 ball abs 1
20 1 19 eqsstri S
21 eqid TopOpen fld = TopOpen fld
22 21 cnfldtopon TopOpen fld TopOn
23 22 toponrestid TopOpen fld = TopOpen fld 𝑡
24 21 23 dvres log −∞ 0 : −∞ 0 −∞ 0 S D log −∞ 0 S = log −∞ 0 int TopOpen fld S
25 2 13 14 20 24 mp4an D log −∞ 0 S = log −∞ 0 int TopOpen fld S
26 1 dvlog2lem S −∞ 0
27 resabs1 S −∞ 0 log −∞ 0 S = log S
28 26 27 ax-mp log −∞ 0 S = log S
29 28 oveq2i D log −∞ 0 S = D log S
30 10 dvlog D log −∞ 0 = x −∞ 0 1 x
31 21 cnfldtop TopOpen fld Top
32 21 cnfldtopn TopOpen fld = MetOpen abs
33 32 blopn abs ∞Met 1 1 * 1 ball abs 1 TopOpen fld
34 15 16 17 33 mp3an 1 ball abs 1 TopOpen fld
35 1 34 eqeltri S TopOpen fld
36 isopn3i TopOpen fld Top S TopOpen fld int TopOpen fld S = S
37 31 35 36 mp2an int TopOpen fld S = S
38 30 37 reseq12i log −∞ 0 int TopOpen fld S = x −∞ 0 1 x S
39 25 29 38 3eqtr3i D log S = x −∞ 0 1 x S
40 resmpt S −∞ 0 x −∞ 0 1 x S = x S 1 x
41 26 40 ax-mp x −∞ 0 1 x S = x S 1 x
42 39 41 eqtri D log S = x S 1 x