Metamath Proof Explorer


Theorem dvlog2lem

Description: Lemma for dvlog2 . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypothesis dvlog2.s S = 1 ball abs 1
Assertion dvlog2lem S −∞ 0

Proof

Step Hyp Ref Expression
1 dvlog2.s S = 1 ball abs 1
2 cnxmet abs ∞Met
3 ax-1cn 1
4 1xr 1 *
5 blssm abs ∞Met 1 1 * 1 ball abs 1
6 2 3 4 5 mp3an 1 ball abs 1
7 1 6 eqsstri S
8 7 sseli x S x
9 1red x −∞ 0 1
10 cnmet abs Met
11 mnfxr −∞ *
12 0re 0
13 iocssre −∞ * 0 −∞ 0
14 11 12 13 mp2an −∞ 0
15 ax-resscn
16 14 15 sstri −∞ 0
17 16 sseli x −∞ 0 x
18 metcl abs Met 1 x 1 abs x
19 10 3 17 18 mp3an12i x −∞ 0 1 abs x
20 1m0e1 1 0 = 1
21 14 sseli x −∞ 0 x
22 12 a1i x −∞ 0 0
23 elioc2 −∞ * 0 x −∞ 0 x −∞ < x x 0
24 11 12 23 mp2an x −∞ 0 x −∞ < x x 0
25 24 simp3bi x −∞ 0 x 0
26 21 22 9 25 lesub2dd x −∞ 0 1 0 1 x
27 20 26 eqbrtrrid x −∞ 0 1 1 x
28 eqid abs = abs
29 28 cnmetdval 1 x 1 abs x = 1 x
30 3 17 29 sylancr x −∞ 0 1 abs x = 1 x
31 0le1 0 1
32 31 a1i x −∞ 0 0 1
33 21 22 9 25 32 letrd x −∞ 0 x 1
34 21 9 33 abssubge0d x −∞ 0 1 x = 1 x
35 30 34 eqtrd x −∞ 0 1 abs x = 1 x
36 27 35 breqtrrd x −∞ 0 1 1 abs x
37 9 19 36 lensymd x −∞ 0 ¬ 1 abs x < 1
38 2 a1i x −∞ 0 abs ∞Met
39 4 a1i x −∞ 0 1 *
40 3 a1i x −∞ 0 1
41 elbl2 abs ∞Met 1 * 1 x x 1 ball abs 1 1 abs x < 1
42 38 39 40 17 41 syl22anc x −∞ 0 x 1 ball abs 1 1 abs x < 1
43 37 42 mtbird x −∞ 0 ¬ x 1 ball abs 1
44 43 con2i x 1 ball abs 1 ¬ x −∞ 0
45 44 1 eleq2s x S ¬ x −∞ 0
46 8 45 eldifd x S x −∞ 0
47 46 ssriv S −∞ 0