| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvgt0.a |  | 
						
							| 2 |  | dvgt0.b |  | 
						
							| 3 |  | dvgt0.f |  | 
						
							| 4 |  | dvlt0.d |  | 
						
							| 5 |  | gtso |  | 
						
							| 6 | 1 2 3 4 | dvgt0lem1 |  | 
						
							| 7 |  | eliooord |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 | 8 | simprd |  | 
						
							| 10 |  | cncff |  | 
						
							| 11 | 3 10 | syl |  | 
						
							| 12 | 11 | ad2antrr |  | 
						
							| 13 |  | simplrr |  | 
						
							| 14 | 12 13 | ffvelcdmd |  | 
						
							| 15 |  | simplrl |  | 
						
							| 16 | 12 15 | ffvelcdmd |  | 
						
							| 17 | 14 16 | resubcld |  | 
						
							| 18 |  | 0red |  | 
						
							| 19 |  | iccssre |  | 
						
							| 20 | 1 2 19 | syl2anc |  | 
						
							| 21 | 20 | ad2antrr |  | 
						
							| 22 | 21 13 | sseldd |  | 
						
							| 23 | 21 15 | sseldd |  | 
						
							| 24 | 22 23 | resubcld |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 | 23 22 | posdifd |  | 
						
							| 27 | 25 26 | mpbid |  | 
						
							| 28 |  | ltdivmul |  | 
						
							| 29 | 17 18 24 27 28 | syl112anc |  | 
						
							| 30 | 9 29 | mpbid |  | 
						
							| 31 | 24 | recnd |  | 
						
							| 32 | 31 | mul01d |  | 
						
							| 33 | 30 32 | breqtrd |  | 
						
							| 34 | 14 16 18 | ltsubaddd |  | 
						
							| 35 | 33 34 | mpbid |  | 
						
							| 36 | 16 | recnd |  | 
						
							| 37 | 36 | addlidd |  | 
						
							| 38 | 35 37 | breqtrd |  | 
						
							| 39 |  | fvex |  | 
						
							| 40 |  | fvex |  | 
						
							| 41 | 39 40 | brcnv |  | 
						
							| 42 | 38 41 | sylibr |  | 
						
							| 43 | 1 2 3 4 5 42 | dvgt0lem2 |  |