Step |
Hyp |
Ref |
Expression |
1 |
|
dvgt0.a |
|
2 |
|
dvgt0.b |
|
3 |
|
dvgt0.f |
|
4 |
|
dvlt0.d |
|
5 |
|
gtso |
|
6 |
1 2 3 4
|
dvgt0lem1 |
|
7 |
|
eliooord |
|
8 |
6 7
|
syl |
|
9 |
8
|
simprd |
|
10 |
|
cncff |
|
11 |
3 10
|
syl |
|
12 |
11
|
ad2antrr |
|
13 |
|
simplrr |
|
14 |
12 13
|
ffvelrnd |
|
15 |
|
simplrl |
|
16 |
12 15
|
ffvelrnd |
|
17 |
14 16
|
resubcld |
|
18 |
|
0red |
|
19 |
|
iccssre |
|
20 |
1 2 19
|
syl2anc |
|
21 |
20
|
ad2antrr |
|
22 |
21 13
|
sseldd |
|
23 |
21 15
|
sseldd |
|
24 |
22 23
|
resubcld |
|
25 |
|
simpr |
|
26 |
23 22
|
posdifd |
|
27 |
25 26
|
mpbid |
|
28 |
|
ltdivmul |
|
29 |
17 18 24 27 28
|
syl112anc |
|
30 |
9 29
|
mpbid |
|
31 |
24
|
recnd |
|
32 |
31
|
mul01d |
|
33 |
30 32
|
breqtrd |
|
34 |
14 16 18
|
ltsubaddd |
|
35 |
33 34
|
mpbid |
|
36 |
16
|
recnd |
|
37 |
36
|
addid2d |
|
38 |
35 37
|
breqtrd |
|
39 |
|
fvex |
|
40 |
|
fvex |
|
41 |
39 40
|
brcnv |
|
42 |
38 41
|
sylibr |
|
43 |
1 2 3 4 5 42
|
dvgt0lem2 |
|