Metamath Proof Explorer


Theorem dvmptc

Description: Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptid.1 φ S
dvmptc.2 φ A
Assertion dvmptc φ dx S A dS x = x S 0

Proof

Step Hyp Ref Expression
1 dvmptid.1 φ S
2 dvmptc.2 φ A
3 eqid TopOpen fld = TopOpen fld
4 3 cnfldtopon TopOpen fld TopOn
5 toponmax TopOpen fld TopOn TopOpen fld
6 4 5 mp1i φ TopOpen fld
7 recnprss S S
8 1 7 syl φ S
9 df-ss S S = S
10 8 9 sylib φ S = S
11 2 adantr φ x A
12 0cnd φ x 0
13 dvconst A D × A = × 0
14 2 13 syl φ D × A = × 0
15 fconstmpt × A = x A
16 15 oveq2i D × A = dx A d x
17 fconstmpt × 0 = x 0
18 14 16 17 3eqtr3g φ dx A d x = x 0
19 3 1 6 10 11 12 18 dvmptres3 φ dx S A dS x = x S 0