Metamath Proof Explorer


Theorem dvmptcj

Description: Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptcj.a φ x X A
dvmptcj.b φ x X B V
dvmptcj.da φ dx X A d x = x X B
Assertion dvmptcj φ dx X A d x = x X B

Proof

Step Hyp Ref Expression
1 dvmptcj.a φ x X A
2 dvmptcj.b φ x X B V
3 dvmptcj.da φ dx X A d x = x X B
4 1 fmpttd φ x X A : X
5 3 dmeqd φ dom dx X A d x = dom x X B
6 2 ralrimiva φ x X B V
7 dmmptg x X B V dom x X B = X
8 6 7 syl φ dom x X B = X
9 5 8 eqtrd φ dom dx X A d x = X
10 dvbsss dom dx X A d x
11 9 10 eqsstrrdi φ X
12 dvcj x X A : X X D * x X A = * dx X A d x
13 4 11 12 syl2anc φ D * x X A = * dx X A d x
14 cjf * :
15 14 a1i φ * :
16 15 1 cofmpt φ * x X A = x X A
17 16 oveq2d φ D * x X A = dx X A d x
18 reelprrecn
19 18 a1i φ
20 19 1 2 3 dvmptcl φ x X B
21 15 feqmptd φ * = y y
22 fveq2 y = B y = B
23 20 3 21 22 fmptco φ * dx X A d x = x X B
24 13 17 23 3eqtr3d φ dx X A d x = x X B