Metamath Proof Explorer


Theorem dvmptcmul

Description: Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s φ S
dvmptadd.a φ x X A
dvmptadd.b φ x X B V
dvmptadd.da φ dx X A dS x = x X B
dvmptcmul.c φ C
Assertion dvmptcmul φ dx X C A dS x = x X C B

Proof

Step Hyp Ref Expression
1 dvmptadd.s φ S
2 dvmptadd.a φ x X A
3 dvmptadd.b φ x X B V
4 dvmptadd.da φ dx X A dS x = x X B
5 dvmptcmul.c φ C
6 5 adantr φ x X C
7 0cnd φ x X 0
8 5 adantr φ x S C
9 0cnd φ x S 0
10 1 5 dvmptc φ dx S C dS x = x S 0
11 4 dmeqd φ dom dx X A dS x = dom x X B
12 3 ralrimiva φ x X B V
13 dmmptg x X B V dom x X B = X
14 12 13 syl φ dom x X B = X
15 11 14 eqtrd φ dom dx X A dS x = X
16 dvbsss dom dx X A dS x S
17 15 16 eqsstrrdi φ X S
18 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
19 eqid TopOpen fld = TopOpen fld
20 19 cnfldtopon TopOpen fld TopOn
21 recnprss S S
22 1 21 syl φ S
23 resttopon TopOpen fld TopOn S TopOpen fld 𝑡 S TopOn S
24 20 22 23 sylancr φ TopOpen fld 𝑡 S TopOn S
25 topontop TopOpen fld 𝑡 S TopOn S TopOpen fld 𝑡 S Top
26 24 25 syl φ TopOpen fld 𝑡 S Top
27 toponuni TopOpen fld 𝑡 S TopOn S S = TopOpen fld 𝑡 S
28 24 27 syl φ S = TopOpen fld 𝑡 S
29 17 28 sseqtrd φ X TopOpen fld 𝑡 S
30 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
31 30 ntrss2 TopOpen fld 𝑡 S Top X TopOpen fld 𝑡 S int TopOpen fld 𝑡 S X X
32 26 29 31 syl2anc φ int TopOpen fld 𝑡 S X X
33 2 fmpttd φ x X A : X
34 22 33 17 18 19 dvbssntr φ dom dx X A dS x int TopOpen fld 𝑡 S X
35 15 34 eqsstrrd φ X int TopOpen fld 𝑡 S X
36 32 35 eqssd φ int TopOpen fld 𝑡 S X = X
37 1 8 9 10 17 18 19 36 dvmptres2 φ dx X C dS x = x X 0
38 1 6 7 37 2 3 4 dvmptmul φ dx X C A dS x = x X 0 A + B C
39 2 mul02d φ x X 0 A = 0
40 39 oveq1d φ x X 0 A + B C = 0 + B C
41 1 2 3 4 dvmptcl φ x X B
42 41 6 mulcld φ x X B C
43 42 addid2d φ x X 0 + B C = B C
44 41 6 mulcomd φ x X B C = C B
45 40 43 44 3eqtrd φ x X 0 A + B C = C B
46 45 mpteq2dva φ x X 0 A + B C = x X C B
47 38 46 eqtrd φ dx X C A dS x = x X C B