| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptadd.s |
|
| 2 |
|
dvmptadd.a |
|
| 3 |
|
dvmptadd.b |
|
| 4 |
|
dvmptadd.da |
|
| 5 |
|
dvmptcmul.c |
|
| 6 |
5
|
adantr |
|
| 7 |
|
0cnd |
|
| 8 |
5
|
adantr |
|
| 9 |
|
0cnd |
|
| 10 |
1 5
|
dvmptc |
|
| 11 |
4
|
dmeqd |
|
| 12 |
3
|
ralrimiva |
|
| 13 |
|
dmmptg |
|
| 14 |
12 13
|
syl |
|
| 15 |
11 14
|
eqtrd |
|
| 16 |
|
dvbsss |
|
| 17 |
15 16
|
eqsstrrdi |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
19
|
cnfldtopon |
|
| 21 |
|
recnprss |
|
| 22 |
1 21
|
syl |
|
| 23 |
|
resttopon |
|
| 24 |
20 22 23
|
sylancr |
|
| 25 |
|
topontop |
|
| 26 |
24 25
|
syl |
|
| 27 |
|
toponuni |
|
| 28 |
24 27
|
syl |
|
| 29 |
17 28
|
sseqtrd |
|
| 30 |
|
eqid |
|
| 31 |
30
|
ntrss2 |
|
| 32 |
26 29 31
|
syl2anc |
|
| 33 |
2
|
fmpttd |
|
| 34 |
22 33 17 18 19
|
dvbssntr |
|
| 35 |
15 34
|
eqsstrrd |
|
| 36 |
32 35
|
eqssd |
|
| 37 |
1 8 9 10 17 18 19 36
|
dvmptres2 |
|
| 38 |
1 6 7 37 2 3 4
|
dvmptmul |
|
| 39 |
2
|
mul02d |
|
| 40 |
39
|
oveq1d |
|
| 41 |
1 2 3 4
|
dvmptcl |
|
| 42 |
41 6
|
mulcld |
|
| 43 |
42
|
addlidd |
|
| 44 |
41 6
|
mulcomd |
|
| 45 |
40 43 44
|
3eqtrd |
|
| 46 |
45
|
mpteq2dva |
|
| 47 |
38 46
|
eqtrd |
|