Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptdiv.s |
|
2 |
|
dvmptdiv.a |
|
3 |
|
dvmptdiv.b |
|
4 |
|
dvmptdiv.da |
|
5 |
|
dvmptdiv.c |
|
6 |
|
dvmptdiv.d |
|
7 |
|
dvmptdiv.dc |
|
8 |
5
|
eldifad |
|
9 |
|
eldifsn |
|
10 |
5 9
|
sylib |
|
11 |
10
|
simprd |
|
12 |
2 8 11
|
divrecd |
|
13 |
12
|
mpteq2dva |
|
14 |
13
|
oveq2d |
|
15 |
8 11
|
reccld |
|
16 |
|
1cnd |
|
17 |
16 6
|
mulcld |
|
18 |
8
|
sqcld |
|
19 |
11
|
neneqd |
|
20 |
|
sqeq0 |
|
21 |
8 20
|
syl |
|
22 |
19 21
|
mtbird |
|
23 |
22
|
neqned |
|
24 |
17 18 23
|
divcld |
|
25 |
24
|
negcld |
|
26 |
|
1cnd |
|
27 |
1 26 5 6 7
|
dvrecg |
|
28 |
1 2 3 4 15 25 27
|
dvmptmul |
|
29 |
1 2 3 4
|
dvmptcl |
|
30 |
29 8
|
mulcld |
|
31 |
30 18 23
|
divcld |
|
32 |
6 2
|
mulcld |
|
33 |
32 18 23
|
divcld |
|
34 |
31 33
|
negsubd |
|
35 |
29 16 8 11
|
div12d |
|
36 |
29 8 11
|
divcld |
|
37 |
36
|
mulid2d |
|
38 |
8
|
sqvald |
|
39 |
38
|
oveq2d |
|
40 |
29 8 8 11 11
|
divcan5rd |
|
41 |
39 40
|
eqtr2d |
|
42 |
35 37 41
|
3eqtrd |
|
43 |
6
|
mulid2d |
|
44 |
43
|
oveq1d |
|
45 |
44
|
negeqd |
|
46 |
45
|
oveq1d |
|
47 |
6 18 23
|
divcld |
|
48 |
47 2
|
mulneg1d |
|
49 |
6 2 18 23
|
div23d |
|
50 |
49
|
eqcomd |
|
51 |
50
|
negeqd |
|
52 |
46 48 51
|
3eqtrd |
|
53 |
42 52
|
oveq12d |
|
54 |
30 32 18 23
|
divsubdird |
|
55 |
34 53 54
|
3eqtr4d |
|
56 |
55
|
mpteq2dva |
|
57 |
14 28 56
|
3eqtrd |
|