Metamath Proof Explorer


Theorem dvmptdivc

Description: Function-builder for derivative, division rule for constant divisor. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvmptadd.s φ S
dvmptadd.a φ x X A
dvmptadd.b φ x X B V
dvmptadd.da φ dx X A dS x = x X B
dvmptcmul.c φ C
dvmptdivc.0 φ C 0
Assertion dvmptdivc φ dx X A C dS x = x X B C

Proof

Step Hyp Ref Expression
1 dvmptadd.s φ S
2 dvmptadd.a φ x X A
3 dvmptadd.b φ x X B V
4 dvmptadd.da φ dx X A dS x = x X B
5 dvmptcmul.c φ C
6 dvmptdivc.0 φ C 0
7 5 6 reccld φ 1 C
8 1 2 3 4 7 dvmptcmul φ dx X 1 C A dS x = x X 1 C B
9 5 adantr φ x X C
10 6 adantr φ x X C 0
11 2 9 10 divrec2d φ x X A C = 1 C A
12 11 mpteq2dva φ x X A C = x X 1 C A
13 12 oveq2d φ dx X A C dS x = dx X 1 C A dS x
14 1 2 3 4 dvmptcl φ x X B
15 14 9 10 divrec2d φ x X B C = 1 C B
16 15 mpteq2dva φ x X B C = x X 1 C B
17 8 13 16 3eqtr4d φ dx X A C dS x = x X B C