Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptfsum.j |
|
2 |
|
dvmptfsum.k |
|
3 |
|
dvmptfsum.s |
|
4 |
|
dvmptfsum.x |
|
5 |
|
dvmptfsum.i |
|
6 |
|
dvmptfsum.a |
|
7 |
|
dvmptfsum.b |
|
8 |
|
dvmptfsum.d |
|
9 |
|
ssid |
|
10 |
|
sseq1 |
|
11 |
|
sumeq1 |
|
12 |
11
|
mpteq2dv |
|
13 |
12
|
oveq2d |
|
14 |
|
sumeq1 |
|
15 |
14
|
mpteq2dv |
|
16 |
13 15
|
eqeq12d |
|
17 |
10 16
|
imbi12d |
|
18 |
17
|
imbi2d |
|
19 |
|
sseq1 |
|
20 |
|
sumeq1 |
|
21 |
20
|
mpteq2dv |
|
22 |
21
|
oveq2d |
|
23 |
|
sumeq1 |
|
24 |
23
|
mpteq2dv |
|
25 |
22 24
|
eqeq12d |
|
26 |
19 25
|
imbi12d |
|
27 |
26
|
imbi2d |
|
28 |
|
sseq1 |
|
29 |
|
sumeq1 |
|
30 |
29
|
mpteq2dv |
|
31 |
30
|
oveq2d |
|
32 |
|
sumeq1 |
|
33 |
32
|
mpteq2dv |
|
34 |
31 33
|
eqeq12d |
|
35 |
28 34
|
imbi12d |
|
36 |
35
|
imbi2d |
|
37 |
|
sseq1 |
|
38 |
|
sumeq1 |
|
39 |
38
|
mpteq2dv |
|
40 |
39
|
oveq2d |
|
41 |
|
sumeq1 |
|
42 |
41
|
mpteq2dv |
|
43 |
40 42
|
eqeq12d |
|
44 |
37 43
|
imbi12d |
|
45 |
44
|
imbi2d |
|
46 |
|
0cnd |
|
47 |
|
0cnd |
|
48 |
3 47
|
dvmptc |
|
49 |
2
|
cnfldtopon |
|
50 |
|
recnprss |
|
51 |
3 50
|
syl |
|
52 |
|
resttopon |
|
53 |
49 51 52
|
sylancr |
|
54 |
1 53
|
eqeltrid |
|
55 |
|
toponss |
|
56 |
54 4 55
|
syl2anc |
|
57 |
3 46 46 48 56 1 2 4
|
dvmptres |
|
58 |
|
sum0 |
|
59 |
58
|
mpteq2i |
|
60 |
59
|
oveq2i |
|
61 |
|
sum0 |
|
62 |
61
|
mpteq2i |
|
63 |
57 60 62
|
3eqtr4g |
|
64 |
63
|
a1d |
|
65 |
|
ssun1 |
|
66 |
|
sstr |
|
67 |
65 66
|
mpan |
|
68 |
67
|
imim1i |
|
69 |
|
simpll |
|
70 |
69 3
|
syl |
|
71 |
5
|
ad3antrrr |
|
72 |
67
|
ad2antlr |
|
73 |
71 72
|
ssfid |
|
74 |
|
simp-4l |
|
75 |
72
|
sselda |
|
76 |
|
simplr |
|
77 |
|
nfv |
|
78 |
|
nfcsb1v |
|
79 |
78
|
nfel1 |
|
80 |
77 79
|
nfim |
|
81 |
|
eleq1w |
|
82 |
81
|
3anbi3d |
|
83 |
|
csbeq1a |
|
84 |
83
|
eleq1d |
|
85 |
82 84
|
imbi12d |
|
86 |
80 85 6
|
chvarfv |
|
87 |
74 75 76 86
|
syl3anc |
|
88 |
73 87
|
fsumcl |
|
89 |
88
|
adantlrr |
|
90 |
|
sumex |
|
91 |
90
|
a1i |
|
92 |
|
nfcv |
|
93 |
|
nfcv |
|
94 |
93 78
|
nfsum |
|
95 |
83
|
sumeq2sdv |
|
96 |
92 94 95
|
cbvmpt |
|
97 |
96
|
oveq2i |
|
98 |
|
nfcv |
|
99 |
|
nfcsb1v |
|
100 |
93 99
|
nfsum |
|
101 |
|
csbeq1a |
|
102 |
101
|
sumeq2sdv |
|
103 |
98 100 102
|
cbvmpt |
|
104 |
97 103
|
eqeq12i |
|
105 |
104
|
biimpi |
|
106 |
105
|
ad2antll |
|
107 |
|
simplll |
|
108 |
|
ssun2 |
|
109 |
|
sstr |
|
110 |
108 109
|
mpan |
|
111 |
|
vex |
|
112 |
111
|
snss |
|
113 |
110 112
|
sylibr |
|
114 |
113
|
ad2antlr |
|
115 |
|
simpr |
|
116 |
6
|
3expb |
|
117 |
116
|
ancom2s |
|
118 |
117
|
ralrimivva |
|
119 |
|
nfcsb1v |
|
120 |
119
|
nfel1 |
|
121 |
|
csbeq1a |
|
122 |
121
|
eleq1d |
|
123 |
79 120 84 122
|
rspc2 |
|
124 |
123
|
ancoms |
|
125 |
118 124
|
mpan9 |
|
126 |
107 114 115 125
|
syl12anc |
|
127 |
126
|
adantlrr |
|
128 |
7
|
3expb |
|
129 |
128
|
ancom2s |
|
130 |
129
|
ralrimivva |
|
131 |
99
|
nfel1 |
|
132 |
|
nfcsb1v |
|
133 |
132
|
nfel1 |
|
134 |
101
|
eleq1d |
|
135 |
|
csbeq1a |
|
136 |
135
|
eleq1d |
|
137 |
131 133 134 136
|
rspc2 |
|
138 |
137
|
ancoms |
|
139 |
130 138
|
mpan9 |
|
140 |
107 114 115 139
|
syl12anc |
|
141 |
140
|
adantlrr |
|
142 |
113
|
ad2antrl |
|
143 |
|
nfv |
|
144 |
|
nfcv |
|
145 |
|
nfcv |
|
146 |
|
nfcv |
|
147 |
|
nfcsb1v |
|
148 |
146 147
|
nfmpt |
|
149 |
144 145 148
|
nfov |
|
150 |
|
nfcsb1v |
|
151 |
146 150
|
nfmpt |
|
152 |
149 151
|
nfeq |
|
153 |
143 152
|
nfim |
|
154 |
|
eleq1w |
|
155 |
154
|
anbi2d |
|
156 |
|
csbeq1a |
|
157 |
156
|
mpteq2dv |
|
158 |
157
|
oveq2d |
|
159 |
|
csbeq1a |
|
160 |
159
|
mpteq2dv |
|
161 |
158 160
|
eqeq12d |
|
162 |
155 161
|
imbi12d |
|
163 |
153 162 8
|
chvarfv |
|
164 |
|
nfcv |
|
165 |
|
nfcv |
|
166 |
165 78
|
nfcsbw |
|
167 |
83
|
csbeq2dv |
|
168 |
164 166 167
|
cbvmpt |
|
169 |
168
|
oveq2i |
|
170 |
|
nfcv |
|
171 |
165 99
|
nfcsbw |
|
172 |
101
|
csbeq2dv |
|
173 |
170 171 172
|
cbvmpt |
|
174 |
163 169 173
|
3eqtr3g |
|
175 |
69 142 174
|
syl2anc |
|
176 |
70 89 91 106 127 141 175
|
dvmptadd |
|
177 |
|
nfcv |
|
178 |
|
nfcv |
|
179 |
178 78
|
nfsum |
|
180 |
83
|
sumeq2sdv |
|
181 |
177 179 180
|
cbvmpt |
|
182 |
|
simpllr |
|
183 |
|
disjsn |
|
184 |
182 183
|
sylibr |
|
185 |
|
eqidd |
|
186 |
|
simplr |
|
187 |
71 186
|
ssfid |
|
188 |
|
simp-4l |
|
189 |
186
|
sselda |
|
190 |
|
simplr |
|
191 |
188 189 190 86
|
syl3anc |
|
192 |
184 185 187 191
|
fsumsplit |
|
193 |
|
sumsns |
|
194 |
111 126 193
|
sylancr |
|
195 |
194
|
oveq2d |
|
196 |
192 195
|
eqtrd |
|
197 |
196
|
mpteq2dva |
|
198 |
181 197
|
syl5eq |
|
199 |
198
|
adantrr |
|
200 |
199
|
oveq2d |
|
201 |
|
nfcv |
|
202 |
178 99
|
nfsum |
|
203 |
101
|
sumeq2sdv |
|
204 |
201 202 203
|
cbvmpt |
|
205 |
77 131
|
nfim |
|
206 |
82 134
|
imbi12d |
|
207 |
205 206 7
|
chvarfv |
|
208 |
188 189 190 207
|
syl3anc |
|
209 |
184 185 187 208
|
fsumsplit |
|
210 |
|
sumsns |
|
211 |
111 140 210
|
sylancr |
|
212 |
211
|
oveq2d |
|
213 |
209 212
|
eqtrd |
|
214 |
213
|
mpteq2dva |
|
215 |
204 214
|
syl5eq |
|
216 |
215
|
adantrr |
|
217 |
176 200 216
|
3eqtr4d |
|
218 |
217
|
exp32 |
|
219 |
218
|
a2d |
|
220 |
68 219
|
syl5 |
|
221 |
220
|
expcom |
|
222 |
221
|
adantl |
|
223 |
222
|
a2d |
|
224 |
18 27 36 45 64 223
|
findcard2s |
|
225 |
5 224
|
mpcom |
|
226 |
9 225
|
mpi |
|