Metamath Proof Explorer


Theorem dvmptfsum

Description: Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Hypotheses dvmptfsum.j J = K 𝑡 S
dvmptfsum.k K = TopOpen fld
dvmptfsum.s φ S
dvmptfsum.x φ X J
dvmptfsum.i φ I Fin
dvmptfsum.a φ i I x X A
dvmptfsum.b φ i I x X B
dvmptfsum.d φ i I dx X A dS x = x X B
Assertion dvmptfsum φ dx X i I A dS x = x X i I B

Proof

Step Hyp Ref Expression
1 dvmptfsum.j J = K 𝑡 S
2 dvmptfsum.k K = TopOpen fld
3 dvmptfsum.s φ S
4 dvmptfsum.x φ X J
5 dvmptfsum.i φ I Fin
6 dvmptfsum.a φ i I x X A
7 dvmptfsum.b φ i I x X B
8 dvmptfsum.d φ i I dx X A dS x = x X B
9 ssid I I
10 sseq1 a = a I I
11 sumeq1 a = i a A = i A
12 11 mpteq2dv a = x X i a A = x X i A
13 12 oveq2d a = dx X i a A dS x = dx X i A dS x
14 sumeq1 a = i a B = i B
15 14 mpteq2dv a = x X i a B = x X i B
16 13 15 eqeq12d a = dx X i a A dS x = x X i a B dx X i A dS x = x X i B
17 10 16 imbi12d a = a I dx X i a A dS x = x X i a B I dx X i A dS x = x X i B
18 17 imbi2d a = φ a I dx X i a A dS x = x X i a B φ I dx X i A dS x = x X i B
19 sseq1 a = b a I b I
20 sumeq1 a = b i a A = i b A
21 20 mpteq2dv a = b x X i a A = x X i b A
22 21 oveq2d a = b dx X i a A dS x = dx X i b A dS x
23 sumeq1 a = b i a B = i b B
24 23 mpteq2dv a = b x X i a B = x X i b B
25 22 24 eqeq12d a = b dx X i a A dS x = x X i a B dx X i b A dS x = x X i b B
26 19 25 imbi12d a = b a I dx X i a A dS x = x X i a B b I dx X i b A dS x = x X i b B
27 26 imbi2d a = b φ a I dx X i a A dS x = x X i a B φ b I dx X i b A dS x = x X i b B
28 sseq1 a = b c a I b c I
29 sumeq1 a = b c i a A = i b c A
30 29 mpteq2dv a = b c x X i a A = x X i b c A
31 30 oveq2d a = b c dx X i a A dS x = dx X i b c A dS x
32 sumeq1 a = b c i a B = i b c B
33 32 mpteq2dv a = b c x X i a B = x X i b c B
34 31 33 eqeq12d a = b c dx X i a A dS x = x X i a B dx X i b c A dS x = x X i b c B
35 28 34 imbi12d a = b c a I dx X i a A dS x = x X i a B b c I dx X i b c A dS x = x X i b c B
36 35 imbi2d a = b c φ a I dx X i a A dS x = x X i a B φ b c I dx X i b c A dS x = x X i b c B
37 sseq1 a = I a I I I
38 sumeq1 a = I i a A = i I A
39 38 mpteq2dv a = I x X i a A = x X i I A
40 39 oveq2d a = I dx X i a A dS x = dx X i I A dS x
41 sumeq1 a = I i a B = i I B
42 41 mpteq2dv a = I x X i a B = x X i I B
43 40 42 eqeq12d a = I dx X i a A dS x = x X i a B dx X i I A dS x = x X i I B
44 37 43 imbi12d a = I a I dx X i a A dS x = x X i a B I I dx X i I A dS x = x X i I B
45 44 imbi2d a = I φ a I dx X i a A dS x = x X i a B φ I I dx X i I A dS x = x X i I B
46 0cnd φ x S 0
47 0cnd φ 0
48 3 47 dvmptc φ dx S 0 dS x = x S 0
49 2 cnfldtopon K TopOn
50 recnprss S S
51 3 50 syl φ S
52 resttopon K TopOn S K 𝑡 S TopOn S
53 49 51 52 sylancr φ K 𝑡 S TopOn S
54 1 53 eqeltrid φ J TopOn S
55 toponss J TopOn S X J X S
56 54 4 55 syl2anc φ X S
57 3 46 46 48 56 1 2 4 dvmptres φ dx X 0 dS x = x X 0
58 sum0 i A = 0
59 58 mpteq2i x X i A = x X 0
60 59 oveq2i dx X i A dS x = dx X 0 dS x
61 sum0 i B = 0
62 61 mpteq2i x X i B = x X 0
63 57 60 62 3eqtr4g φ dx X i A dS x = x X i B
64 63 a1d φ I dx X i A dS x = x X i B
65 ssun1 b b c
66 sstr b b c b c I b I
67 65 66 mpan b c I b I
68 67 imim1i b I dx X i b A dS x = x X i b B b c I dx X i b A dS x = x X i b B
69 simpll φ ¬ c b b c I dx X i b A dS x = x X i b B φ
70 69 3 syl φ ¬ c b b c I dx X i b A dS x = x X i b B S
71 5 ad3antrrr φ ¬ c b b c I a X I Fin
72 67 ad2antlr φ ¬ c b b c I a X b I
73 71 72 ssfid φ ¬ c b b c I a X b Fin
74 simp-4l φ ¬ c b b c I a X i b φ
75 72 sselda φ ¬ c b b c I a X i b i I
76 simplr φ ¬ c b b c I a X i b a X
77 nfv x φ i I a X
78 nfcsb1v _ x a / x A
79 78 nfel1 x a / x A
80 77 79 nfim x φ i I a X a / x A
81 eleq1w x = a x X a X
82 81 3anbi3d x = a φ i I x X φ i I a X
83 csbeq1a x = a A = a / x A
84 83 eleq1d x = a A a / x A
85 82 84 imbi12d x = a φ i I x X A φ i I a X a / x A
86 80 85 6 chvarfv φ i I a X a / x A
87 74 75 76 86 syl3anc φ ¬ c b b c I a X i b a / x A
88 73 87 fsumcl φ ¬ c b b c I a X i b a / x A
89 88 adantlrr φ ¬ c b b c I dx X i b A dS x = x X i b B a X i b a / x A
90 sumex i b a / x B V
91 90 a1i φ ¬ c b b c I dx X i b A dS x = x X i b B a X i b a / x B V
92 nfcv _ a i b A
93 nfcv _ x b
94 93 78 nfsum _ x i b a / x A
95 83 sumeq2sdv x = a i b A = i b a / x A
96 92 94 95 cbvmpt x X i b A = a X i b a / x A
97 96 oveq2i dx X i b A dS x = da X i b a / x A dS a
98 nfcv _ a i b B
99 nfcsb1v _ x a / x B
100 93 99 nfsum _ x i b a / x B
101 csbeq1a x = a B = a / x B
102 101 sumeq2sdv x = a i b B = i b a / x B
103 98 100 102 cbvmpt x X i b B = a X i b a / x B
104 97 103 eqeq12i dx X i b A dS x = x X i b B da X i b a / x A dS a = a X i b a / x B
105 104 biimpi dx X i b A dS x = x X i b B da X i b a / x A dS a = a X i b a / x B
106 105 ad2antll φ ¬ c b b c I dx X i b A dS x = x X i b B da X i b a / x A dS a = a X i b a / x B
107 simplll φ ¬ c b b c I a X φ
108 ssun2 c b c
109 sstr c b c b c I c I
110 108 109 mpan b c I c I
111 vex c V
112 111 snss c I c I
113 110 112 sylibr b c I c I
114 113 ad2antlr φ ¬ c b b c I a X c I
115 simpr φ ¬ c b b c I a X a X
116 6 3expb φ i I x X A
117 116 ancom2s φ x X i I A
118 117 ralrimivva φ x X i I A
119 nfcsb1v _ i c / i a / x A
120 119 nfel1 i c / i a / x A
121 csbeq1a i = c a / x A = c / i a / x A
122 121 eleq1d i = c a / x A c / i a / x A
123 79 120 84 122 rspc2 a X c I x X i I A c / i a / x A
124 123 ancoms c I a X x X i I A c / i a / x A
125 118 124 mpan9 φ c I a X c / i a / x A
126 107 114 115 125 syl12anc φ ¬ c b b c I a X c / i a / x A
127 126 adantlrr φ ¬ c b b c I dx X i b A dS x = x X i b B a X c / i a / x A
128 7 3expb φ i I x X B
129 128 ancom2s φ x X i I B
130 129 ralrimivva φ x X i I B
131 99 nfel1 x a / x B
132 nfcsb1v _ i c / i a / x B
133 132 nfel1 i c / i a / x B
134 101 eleq1d x = a B a / x B
135 csbeq1a i = c a / x B = c / i a / x B
136 135 eleq1d i = c a / x B c / i a / x B
137 131 133 134 136 rspc2 a X c I x X i I B c / i a / x B
138 137 ancoms c I a X x X i I B c / i a / x B
139 130 138 mpan9 φ c I a X c / i a / x B
140 107 114 115 139 syl12anc φ ¬ c b b c I a X c / i a / x B
141 140 adantlrr φ ¬ c b b c I dx X i b A dS x = x X i b B a X c / i a / x B
142 113 ad2antrl φ ¬ c b b c I dx X i b A dS x = x X i b B c I
143 nfv i φ c I
144 nfcv _ i S
145 nfcv _ i D
146 nfcv _ i X
147 nfcsb1v _ i c / i A
148 146 147 nfmpt _ i x X c / i A
149 144 145 148 nfov _ i dx X c / i A dS x
150 nfcsb1v _ i c / i B
151 146 150 nfmpt _ i x X c / i B
152 149 151 nfeq i dx X c / i A dS x = x X c / i B
153 143 152 nfim i φ c I dx X c / i A dS x = x X c / i B
154 eleq1w i = c i I c I
155 154 anbi2d i = c φ i I φ c I
156 csbeq1a i = c A = c / i A
157 156 mpteq2dv i = c x X A = x X c / i A
158 157 oveq2d i = c dx X A dS x = dx X c / i A dS x
159 csbeq1a i = c B = c / i B
160 159 mpteq2dv i = c x X B = x X c / i B
161 158 160 eqeq12d i = c dx X A dS x = x X B dx X c / i A dS x = x X c / i B
162 155 161 imbi12d i = c φ i I dx X A dS x = x X B φ c I dx X c / i A dS x = x X c / i B
163 153 162 8 chvarfv φ c I dx X c / i A dS x = x X c / i B
164 nfcv _ a c / i A
165 nfcv _ x c
166 165 78 nfcsbw _ x c / i a / x A
167 83 csbeq2dv x = a c / i A = c / i a / x A
168 164 166 167 cbvmpt x X c / i A = a X c / i a / x A
169 168 oveq2i dx X c / i A dS x = da X c / i a / x A dS a
170 nfcv _ a c / i B
171 165 99 nfcsbw _ x c / i a / x B
172 101 csbeq2dv x = a c / i B = c / i a / x B
173 170 171 172 cbvmpt x X c / i B = a X c / i a / x B
174 163 169 173 3eqtr3g φ c I da X c / i a / x A dS a = a X c / i a / x B
175 69 142 174 syl2anc φ ¬ c b b c I dx X i b A dS x = x X i b B da X c / i a / x A dS a = a X c / i a / x B
176 70 89 91 106 127 141 175 dvmptadd φ ¬ c b b c I dx X i b A dS x = x X i b B da X i b a / x A + c / i a / x A dS a = a X i b a / x B + c / i a / x B
177 nfcv _ a i b c A
178 nfcv _ x b c
179 178 78 nfsum _ x i b c a / x A
180 83 sumeq2sdv x = a i b c A = i b c a / x A
181 177 179 180 cbvmpt x X i b c A = a X i b c a / x A
182 simpllr φ ¬ c b b c I a X ¬ c b
183 disjsn b c = ¬ c b
184 182 183 sylibr φ ¬ c b b c I a X b c =
185 eqidd φ ¬ c b b c I a X b c = b c
186 simplr φ ¬ c b b c I a X b c I
187 71 186 ssfid φ ¬ c b b c I a X b c Fin
188 simp-4l φ ¬ c b b c I a X i b c φ
189 186 sselda φ ¬ c b b c I a X i b c i I
190 simplr φ ¬ c b b c I a X i b c a X
191 188 189 190 86 syl3anc φ ¬ c b b c I a X i b c a / x A
192 184 185 187 191 fsumsplit φ ¬ c b b c I a X i b c a / x A = i b a / x A + i c a / x A
193 sumsns c V c / i a / x A i c a / x A = c / i a / x A
194 111 126 193 sylancr φ ¬ c b b c I a X i c a / x A = c / i a / x A
195 194 oveq2d φ ¬ c b b c I a X i b a / x A + i c a / x A = i b a / x A + c / i a / x A
196 192 195 eqtrd φ ¬ c b b c I a X i b c a / x A = i b a / x A + c / i a / x A
197 196 mpteq2dva φ ¬ c b b c I a X i b c a / x A = a X i b a / x A + c / i a / x A
198 181 197 eqtrid φ ¬ c b b c I x X i b c A = a X i b a / x A + c / i a / x A
199 198 adantrr φ ¬ c b b c I dx X i b A dS x = x X i b B x X i b c A = a X i b a / x A + c / i a / x A
200 199 oveq2d φ ¬ c b b c I dx X i b A dS x = x X i b B dx X i b c A dS x = da X i b a / x A + c / i a / x A dS a
201 nfcv _ a i b c B
202 178 99 nfsum _ x i b c a / x B
203 101 sumeq2sdv x = a i b c B = i b c a / x B
204 201 202 203 cbvmpt x X i b c B = a X i b c a / x B
205 77 131 nfim x φ i I a X a / x B
206 82 134 imbi12d x = a φ i I x X B φ i I a X a / x B
207 205 206 7 chvarfv φ i I a X a / x B
208 188 189 190 207 syl3anc φ ¬ c b b c I a X i b c a / x B
209 184 185 187 208 fsumsplit φ ¬ c b b c I a X i b c a / x B = i b a / x B + i c a / x B
210 sumsns c V c / i a / x B i c a / x B = c / i a / x B
211 111 140 210 sylancr φ ¬ c b b c I a X i c a / x B = c / i a / x B
212 211 oveq2d φ ¬ c b b c I a X i b a / x B + i c a / x B = i b a / x B + c / i a / x B
213 209 212 eqtrd φ ¬ c b b c I a X i b c a / x B = i b a / x B + c / i a / x B
214 213 mpteq2dva φ ¬ c b b c I a X i b c a / x B = a X i b a / x B + c / i a / x B
215 204 214 eqtrid φ ¬ c b b c I x X i b c B = a X i b a / x B + c / i a / x B
216 215 adantrr φ ¬ c b b c I dx X i b A dS x = x X i b B x X i b c B = a X i b a / x B + c / i a / x B
217 176 200 216 3eqtr4d φ ¬ c b b c I dx X i b A dS x = x X i b B dx X i b c A dS x = x X i b c B
218 217 exp32 φ ¬ c b b c I dx X i b A dS x = x X i b B dx X i b c A dS x = x X i b c B
219 218 a2d φ ¬ c b b c I dx X i b A dS x = x X i b B b c I dx X i b c A dS x = x X i b c B
220 68 219 syl5 φ ¬ c b b I dx X i b A dS x = x X i b B b c I dx X i b c A dS x = x X i b c B
221 220 expcom ¬ c b φ b I dx X i b A dS x = x X i b B b c I dx X i b c A dS x = x X i b c B
222 221 adantl b Fin ¬ c b φ b I dx X i b A dS x = x X i b B b c I dx X i b c A dS x = x X i b c B
223 222 a2d b Fin ¬ c b φ b I dx X i b A dS x = x X i b B φ b c I dx X i b c A dS x = x X i b c B
224 18 27 36 45 64 223 findcard2s I Fin φ I I dx X i I A dS x = x X i I B
225 5 224 mpcom φ I I dx X i I A dS x = x X i I B
226 9 225 mpi φ dx X i I A dS x = x X i I B