Metamath Proof Explorer


Theorem dvmptid

Description: Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypothesis dvmptid.1 φ S
Assertion dvmptid φ dx S x dS x = x S 1

Proof

Step Hyp Ref Expression
1 dvmptid.1 φ S
2 eqid TopOpen fld = TopOpen fld
3 2 cnfldtopon TopOpen fld TopOn
4 toponmax TopOpen fld TopOn TopOpen fld
5 3 4 mp1i φ TopOpen fld
6 recnprss S S
7 1 6 syl φ S
8 df-ss S S = S
9 7 8 sylib φ S = S
10 simpr φ x x
11 1cnd φ x 1
12 mptresid I = x x
13 12 eqcomi x x = I
14 13 oveq2i dx x d x = D I
15 dvid D I = × 1
16 fconstmpt × 1 = x 1
17 14 15 16 3eqtri dx x d x = x 1
18 17 a1i φ dx x d x = x 1
19 2 1 5 9 10 11 18 dvmptres3 φ dx S x dS x = x S 1