Metamath Proof Explorer


Theorem dvmptidg

Description: Function-builder for derivative: derivative of the identity. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvmptidg.s φ S
dvmptidg.a φ A TopOpen fld 𝑡 S
Assertion dvmptidg φ dx A x dS x = x A 1

Proof

Step Hyp Ref Expression
1 dvmptidg.s φ S
2 dvmptidg.a φ A TopOpen fld 𝑡 S
3 ax-resscn
4 sseq1 S = S
5 3 4 mpbiri S = S
6 eqimss S = S
7 5 6 pm3.2i S = S S = S
8 elpri S S = S =
9 1 8 syl φ S = S =
10 pm3.44 S = S S = S S = S = S
11 7 9 10 mpsyl φ S
12 11 sselda φ x S x
13 1red φ x S 1
14 1 dvmptid φ dx S x dS x = x S 1
15 eqid TopOpen fld = TopOpen fld
16 15 cnfldtopon TopOpen fld TopOn
17 16 a1i φ TopOpen fld TopOn
18 resttopon TopOpen fld TopOn S TopOpen fld 𝑡 S TopOn S
19 17 11 18 syl2anc φ TopOpen fld 𝑡 S TopOn S
20 toponss TopOpen fld 𝑡 S TopOn S A TopOpen fld 𝑡 S A S
21 19 2 20 syl2anc φ A S
22 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
23 1 12 13 14 21 22 15 2 dvmptres φ dx A x dS x = x A 1