Metamath Proof Explorer


Theorem dvmptim

Description: Function-builder for derivative, imaginary part. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses dvmptcj.a φ x X A
dvmptcj.b φ x X B V
dvmptcj.da φ dx X A d x = x X B
Assertion dvmptim φ dx X A d x = x X B

Proof

Step Hyp Ref Expression
1 dvmptcj.a φ x X A
2 dvmptcj.b φ x X B V
3 dvmptcj.da φ dx X A d x = x X B
4 reelprrecn
5 4 a1i φ
6 1 cjcld φ x X A
7 1 6 subcld φ x X A A
8 5 1 2 3 dvmptcl φ x X B
9 8 cjcld φ x X B
10 8 9 subcld φ x X B B
11 1 2 3 dvmptcj φ dx X A d x = x X B
12 5 1 2 3 6 9 11 dvmptsub φ dx X A A d x = x X B B
13 2mulicn 2 i
14 2muline0 2 i 0
15 13 14 reccli 1 2 i
16 15 a1i φ 1 2 i
17 5 7 10 12 16 dvmptcmul φ dx X 1 2 i A A d x = x X 1 2 i B B
18 imval2 A A = A A 2 i
19 1 18 syl φ x X A = A A 2 i
20 divrec2 A A 2 i 2 i 0 A A 2 i = 1 2 i A A
21 13 14 20 mp3an23 A A A A 2 i = 1 2 i A A
22 7 21 syl φ x X A A 2 i = 1 2 i A A
23 19 22 eqtrd φ x X A = 1 2 i A A
24 23 mpteq2dva φ x X A = x X 1 2 i A A
25 24 oveq2d φ dx X A d x = dx X 1 2 i A A d x
26 imval2 B B = B B 2 i
27 8 26 syl φ x X B = B B 2 i
28 divrec2 B B 2 i 2 i 0 B B 2 i = 1 2 i B B
29 13 14 28 mp3an23 B B B B 2 i = 1 2 i B B
30 10 29 syl φ x X B B 2 i = 1 2 i B B
31 27 30 eqtrd φ x X B = 1 2 i B B
32 31 mpteq2dva φ x X B = x X 1 2 i B B
33 17 25 32 3eqtr4d φ dx X A d x = x X B