Metamath Proof Explorer


Theorem dvmptneg

Description: Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s φ S
dvmptadd.a φ x X A
dvmptadd.b φ x X B V
dvmptadd.da φ dx X A dS x = x X B
Assertion dvmptneg φ dx X A dS x = x X B

Proof

Step Hyp Ref Expression
1 dvmptadd.s φ S
2 dvmptadd.a φ x X A
3 dvmptadd.b φ x X B V
4 dvmptadd.da φ dx X A dS x = x X B
5 neg1cn 1
6 5 a1i φ 1
7 1 2 3 4 6 dvmptcmul φ dx X -1 A dS x = x X -1 B
8 2 mulm1d φ x X -1 A = A
9 8 mpteq2dva φ x X -1 A = x X A
10 9 oveq2d φ dx X -1 A dS x = dx X A dS x
11 1 2 3 4 dvmptcl φ x X B
12 11 mulm1d φ x X -1 B = B
13 12 mpteq2dva φ x X -1 B = x X B
14 7 10 13 3eqtr3d φ dx X A dS x = x X B