Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptntr.s |
|
2 |
|
dvmptntr.x |
|
3 |
|
dvmptntr.a |
|
4 |
|
dvmptntr.j |
|
5 |
|
dvmptntr.k |
|
6 |
|
dvmptntr.i |
|
7 |
5
|
cnfldtopon |
|
8 |
|
resttopon |
|
9 |
7 1 8
|
sylancr |
|
10 |
4 9
|
eqeltrid |
|
11 |
|
topontop |
|
12 |
10 11
|
syl |
|
13 |
|
toponuni |
|
14 |
10 13
|
syl |
|
15 |
2 14
|
sseqtrd |
|
16 |
|
eqid |
|
17 |
16
|
ntridm |
|
18 |
12 15 17
|
syl2anc |
|
19 |
6
|
fveq2d |
|
20 |
18 19
|
eqtr3d |
|
21 |
20
|
reseq2d |
|
22 |
3
|
fmpttd |
|
23 |
5 4
|
dvres |
|
24 |
1 22 2 2 23
|
syl22anc |
|
25 |
16
|
ntrss2 |
|
26 |
12 15 25
|
syl2anc |
|
27 |
6 26
|
eqsstrrd |
|
28 |
27 2
|
sstrd |
|
29 |
5 4
|
dvres |
|
30 |
1 22 2 28 29
|
syl22anc |
|
31 |
21 24 30
|
3eqtr4d |
|
32 |
|
ssid |
|
33 |
|
resmpt |
|
34 |
32 33
|
mp1i |
|
35 |
34
|
oveq2d |
|
36 |
31 35
|
eqtr3d |
|
37 |
27
|
resmptd |
|
38 |
37
|
oveq2d |
|
39 |
36 38
|
eqtr3d |
|