Metamath Proof Explorer


Theorem dvmptntr

Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptntr.s φ S
dvmptntr.x φ X S
dvmptntr.a φ x X A
dvmptntr.j J = K 𝑡 S
dvmptntr.k K = TopOpen fld
dvmptntr.i φ int J X = Y
Assertion dvmptntr φ dx X A dS x = dx Y A dS x

Proof

Step Hyp Ref Expression
1 dvmptntr.s φ S
2 dvmptntr.x φ X S
3 dvmptntr.a φ x X A
4 dvmptntr.j J = K 𝑡 S
5 dvmptntr.k K = TopOpen fld
6 dvmptntr.i φ int J X = Y
7 5 cnfldtopon K TopOn
8 resttopon K TopOn S K 𝑡 S TopOn S
9 7 1 8 sylancr φ K 𝑡 S TopOn S
10 4 9 eqeltrid φ J TopOn S
11 topontop J TopOn S J Top
12 10 11 syl φ J Top
13 toponuni J TopOn S S = J
14 10 13 syl φ S = J
15 2 14 sseqtrd φ X J
16 eqid J = J
17 16 ntridm J Top X J int J int J X = int J X
18 12 15 17 syl2anc φ int J int J X = int J X
19 6 fveq2d φ int J int J X = int J Y
20 18 19 eqtr3d φ int J X = int J Y
21 20 reseq2d φ dx X A dS x int J X = dx X A dS x int J Y
22 3 fmpttd φ x X A : X
23 5 4 dvres S x X A : X X S X S S D x X A X = dx X A dS x int J X
24 1 22 2 2 23 syl22anc φ S D x X A X = dx X A dS x int J X
25 16 ntrss2 J Top X J int J X X
26 12 15 25 syl2anc φ int J X X
27 6 26 eqsstrrd φ Y X
28 27 2 sstrd φ Y S
29 5 4 dvres S x X A : X X S Y S S D x X A Y = dx X A dS x int J Y
30 1 22 2 28 29 syl22anc φ S D x X A Y = dx X A dS x int J Y
31 21 24 30 3eqtr4d φ S D x X A X = S D x X A Y
32 ssid X X
33 resmpt X X x X A X = x X A
34 32 33 mp1i φ x X A X = x X A
35 34 oveq2d φ S D x X A X = dx X A dS x
36 31 35 eqtr3d φ S D x X A Y = dx X A dS x
37 27 resmptd φ x X A Y = x Y A
38 37 oveq2d φ S D x X A Y = dx Y A dS x
39 36 38 eqtr3d φ dx X A dS x = dx Y A dS x