Metamath Proof Explorer


Theorem dvmptre

Description: Function-builder for derivative, real part. (Contributed by Mario Carneiro, 1-Sep-2014)

Ref Expression
Hypotheses dvmptcj.a φ x X A
dvmptcj.b φ x X B V
dvmptcj.da φ dx X A d x = x X B
Assertion dvmptre φ dx X A d x = x X B

Proof

Step Hyp Ref Expression
1 dvmptcj.a φ x X A
2 dvmptcj.b φ x X B V
3 dvmptcj.da φ dx X A d x = x X B
4 reelprrecn
5 4 a1i φ
6 1 cjcld φ x X A
7 1 6 addcld φ x X A + A
8 5 1 2 3 dvmptcl φ x X B
9 8 cjcld φ x X B
10 8 9 addcld φ x X B + B
11 1 2 3 dvmptcj φ dx X A d x = x X B
12 5 1 2 3 6 9 11 dvmptadd φ dx X A + A d x = x X B + B
13 halfcn 1 2
14 13 a1i φ 1 2
15 5 7 10 12 14 dvmptcmul φ dx X 1 2 A + A d x = x X 1 2 B + B
16 reval A A = A + A 2
17 1 16 syl φ x X A = A + A 2
18 2cn 2
19 2ne0 2 0
20 divrec2 A + A 2 2 0 A + A 2 = 1 2 A + A
21 18 19 20 mp3an23 A + A A + A 2 = 1 2 A + A
22 7 21 syl φ x X A + A 2 = 1 2 A + A
23 17 22 eqtrd φ x X A = 1 2 A + A
24 23 mpteq2dva φ x X A = x X 1 2 A + A
25 24 oveq2d φ dx X A d x = dx X 1 2 A + A d x
26 reval B B = B + B 2
27 8 26 syl φ x X B = B + B 2
28 divrec2 B + B 2 2 0 B + B 2 = 1 2 B + B
29 18 19 28 mp3an23 B + B B + B 2 = 1 2 B + B
30 10 29 syl φ x X B + B 2 = 1 2 B + B
31 27 30 eqtrd φ x X B = 1 2 B + B
32 31 mpteq2dva φ x X B = x X 1 2 B + B
33 15 25 32 3eqtr4d φ dx X A d x = x X B