Metamath Proof Explorer


Theorem dvmptrecl

Description: Real closure of a derivative. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvmptrecl.s φ S
dvmptrecl.a φ x S A
dvmptrecl.v φ x S B V
dvmptrecl.b φ dx S A d x = x S B
Assertion dvmptrecl φ x S B

Proof

Step Hyp Ref Expression
1 dvmptrecl.s φ S
2 dvmptrecl.a φ x S A
3 dvmptrecl.v φ x S B V
4 dvmptrecl.b φ dx S A d x = x S B
5 2 fmpttd φ x S A : S
6 dvfre x S A : S S dx S A d x : dom dx S A d x
7 5 1 6 syl2anc φ dx S A d x : dom dx S A d x
8 4 dmeqd φ dom dx S A d x = dom x S B
9 3 ralrimiva φ x S B V
10 dmmptg x S B V dom x S B = S
11 9 10 syl φ dom x S B = S
12 8 11 eqtrd φ dom dx S A d x = S
13 4 12 feq12d φ dx S A d x : dom dx S A d x x S B : S
14 7 13 mpbid φ x S B : S
15 14 fvmptelrn φ x S B