Database
BASIC REAL AND COMPLEX ANALYSIS
Derivatives
Real and complex differentiation
Results on real differentiation
dvmptrecl
Next ⟩
dvfsumrlimf
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvmptrecl
Description:
Real closure of a derivative.
(Contributed by
Mario Carneiro
, 18-May-2016)
Ref
Expression
Hypotheses
dvmptrecl.s
⊢
φ
→
S
⊆
ℝ
dvmptrecl.a
⊢
φ
∧
x
∈
S
→
A
∈
ℝ
dvmptrecl.v
⊢
φ
∧
x
∈
S
→
B
∈
V
dvmptrecl.b
⊢
φ
→
d
x
∈
S
A
d
ℝ
x
=
x
∈
S
⟼
B
Assertion
dvmptrecl
⊢
φ
∧
x
∈
S
→
B
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
dvmptrecl.s
⊢
φ
→
S
⊆
ℝ
2
dvmptrecl.a
⊢
φ
∧
x
∈
S
→
A
∈
ℝ
3
dvmptrecl.v
⊢
φ
∧
x
∈
S
→
B
∈
V
4
dvmptrecl.b
⊢
φ
→
d
x
∈
S
A
d
ℝ
x
=
x
∈
S
⟼
B
5
2
fmpttd
⊢
φ
→
x
∈
S
⟼
A
:
S
⟶
ℝ
6
dvfre
⊢
x
∈
S
⟼
A
:
S
⟶
ℝ
∧
S
⊆
ℝ
→
d
x
∈
S
A
d
ℝ
x
:
dom
⁡
d
x
∈
S
A
d
ℝ
x
⟶
ℝ
7
5
1
6
syl2anc
⊢
φ
→
d
x
∈
S
A
d
ℝ
x
:
dom
⁡
d
x
∈
S
A
d
ℝ
x
⟶
ℝ
8
4
dmeqd
⊢
φ
→
dom
⁡
d
x
∈
S
A
d
ℝ
x
=
dom
⁡
x
∈
S
⟼
B
9
3
ralrimiva
⊢
φ
→
∀
x
∈
S
B
∈
V
10
dmmptg
⊢
∀
x
∈
S
B
∈
V
→
dom
⁡
x
∈
S
⟼
B
=
S
11
9
10
syl
⊢
φ
→
dom
⁡
x
∈
S
⟼
B
=
S
12
8
11
eqtrd
⊢
φ
→
dom
⁡
d
x
∈
S
A
d
ℝ
x
=
S
13
4
12
feq12d
⊢
φ
→
d
x
∈
S
A
d
ℝ
x
:
dom
⁡
d
x
∈
S
A
d
ℝ
x
⟶
ℝ
↔
x
∈
S
⟼
B
:
S
⟶
ℝ
14
7
13
mpbid
⊢
φ
→
x
∈
S
⟼
B
:
S
⟶
ℝ
15
14
fvmptelrn
⊢
φ
∧
x
∈
S
→
B
∈
ℝ