Metamath Proof Explorer


Theorem dvmptres

Description: Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptadd.s φ S
dvmptadd.a φ x X A
dvmptadd.b φ x X B V
dvmptadd.da φ dx X A dS x = x X B
dvmptres.y φ Y X
dvmptres.j J = K 𝑡 S
dvmptres.k K = TopOpen fld
dvmptres.t φ Y J
Assertion dvmptres φ dx Y A dS x = x Y B

Proof

Step Hyp Ref Expression
1 dvmptadd.s φ S
2 dvmptadd.a φ x X A
3 dvmptadd.b φ x X B V
4 dvmptadd.da φ dx X A dS x = x X B
5 dvmptres.y φ Y X
6 dvmptres.j J = K 𝑡 S
7 dvmptres.k K = TopOpen fld
8 dvmptres.t φ Y J
9 7 cnfldtop K Top
10 resttop K Top S K 𝑡 S Top
11 9 1 10 sylancr φ K 𝑡 S Top
12 6 11 eqeltrid φ J Top
13 isopn3i J Top Y J int J Y = Y
14 12 8 13 syl2anc φ int J Y = Y
15 1 2 3 4 5 6 7 14 dvmptres2 φ dx Y A dS x = x Y B