Metamath Proof Explorer


Theorem dvmptres3

Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvmptres3.j J = TopOpen fld
dvmptres3.s φ S
dvmptres3.x φ X J
dvmptres3.y φ S X = Y
dvmptres3.a φ x X A
dvmptres3.b φ x X B V
dvmptres3.d φ dx X A d x = x X B
Assertion dvmptres3 φ dx Y A dS x = x Y B

Proof

Step Hyp Ref Expression
1 dvmptres3.j J = TopOpen fld
2 dvmptres3.s φ S
3 dvmptres3.x φ X J
4 dvmptres3.y φ S X = Y
5 dvmptres3.a φ x X A
6 dvmptres3.b φ x X B V
7 dvmptres3.d φ dx X A d x = x X B
8 5 fmpttd φ x X A : X
9 7 dmeqd φ dom dx X A d x = dom x X B
10 eqid x X B = x X B
11 10 6 dmmptd φ dom x X B = X
12 9 11 eqtrd φ dom dx X A d x = X
13 1 dvres3a S x X A : X X J dom dx X A d x = X S D x X A S = dx X A d x S
14 2 8 3 12 13 syl22anc φ S D x X A S = dx X A d x S
15 rescom x X A X S = x X A S X
16 resres x X A S X = x X A S X
17 15 16 eqtri x X A X S = x X A S X
18 4 reseq2d φ x X A S X = x X A Y
19 17 18 syl5eq φ x X A X S = x X A Y
20 ffn x X A : X x X A Fn X
21 fnresdm x X A Fn X x X A X = x X A
22 8 20 21 3syl φ x X A X = x X A
23 22 reseq1d φ x X A X S = x X A S
24 inss2 S X X
25 4 24 eqsstrrdi φ Y X
26 25 resmptd φ x X A Y = x Y A
27 19 23 26 3eqtr3d φ x X A S = x Y A
28 27 oveq2d φ S D x X A S = dx Y A dS x
29 rescom x X B X S = x X B S X
30 resres x X B S X = x X B S X
31 29 30 eqtri x X B X S = x X B S X
32 4 reseq2d φ x X B S X = x X B Y
33 31 32 syl5eq φ x X B X S = x X B Y
34 6 ralrimiva φ x X B V
35 10 fnmpt x X B V x X B Fn X
36 fnresdm x X B Fn X x X B X = x X B
37 34 35 36 3syl φ x X B X = x X B
38 37 7 eqtr4d φ x X B X = dx X A d x
39 38 reseq1d φ x X B X S = dx X A d x S
40 25 resmptd φ x X B Y = x Y B
41 33 39 40 3eqtr3d φ dx X A d x S = x Y B
42 14 28 41 3eqtr3d φ dx Y A dS x = x Y B