Metamath Proof Explorer


Theorem dvn0

Description: Zero times iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion dvn0 S F 𝑝𝑚 S S D n F 0 = F

Proof

Step Hyp Ref Expression
1 eqid x V S D x = x V S D x
2 1 dvnfval S F 𝑝𝑚 S S D n F = seq 0 x V S D x 1 st 0 × F
3 2 fveq1d S F 𝑝𝑚 S S D n F 0 = seq 0 x V S D x 1 st 0 × F 0
4 0z 0
5 simpr S F 𝑝𝑚 S F 𝑝𝑚 S
6 0nn0 0 0
7 fvconst2g F 𝑝𝑚 S 0 0 0 × F 0 = F
8 5 6 7 sylancl S F 𝑝𝑚 S 0 × F 0 = F
9 4 8 seq1i S F 𝑝𝑚 S seq 0 x V S D x 1 st 0 × F 0 = F
10 3 9 eqtrd S F 𝑝𝑚 S S D n F 0 = F