Metamath Proof Explorer


Theorem dvn1

Description: One times iterated derivative. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion dvn1 S F 𝑝𝑚 S S D n F 1 = S D F

Proof

Step Hyp Ref Expression
1 0p1e1 0 + 1 = 1
2 1 fveq2i S D n F 0 + 1 = S D n F 1
3 0nn0 0 0
4 dvnp1 S F 𝑝𝑚 S 0 0 S D n F 0 + 1 = S D S D n F 0
5 3 4 mp3an3 S F 𝑝𝑚 S S D n F 0 + 1 = S D S D n F 0
6 dvn0 S F 𝑝𝑚 S S D n F 0 = F
7 6 oveq2d S F 𝑝𝑚 S S D S D n F 0 = S D F
8 5 7 eqtrd S F 𝑝𝑚 S S D n F 0 + 1 = S D F
9 2 8 eqtr3id S F 𝑝𝑚 S S D n F 1 = S D F