Database
BASIC REAL AND COMPLEX ANALYSIS
Derivatives
Real and complex differentiation
Derivatives of functions of one complex or real variable
dvn1
Next ⟩
dvnf
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvn1
Description:
One times iterated derivative.
(Contributed by
Mario Carneiro
, 1-Jan-2017)
Ref
Expression
Assertion
dvn1
⊢
S
⊆
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
S
→
S
D
n
F
⁡
1
=
S
D
F
Proof
Step
Hyp
Ref
Expression
1
0p1e1
⊢
0
+
1
=
1
2
1
fveq2i
⊢
S
D
n
F
⁡
0
+
1
=
S
D
n
F
⁡
1
3
0nn0
⊢
0
∈
ℕ
0
4
dvnp1
⊢
S
⊆
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
S
∧
0
∈
ℕ
0
→
S
D
n
F
⁡
0
+
1
=
S
D
S
D
n
F
⁡
0
5
3
4
mp3an3
⊢
S
⊆
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
S
→
S
D
n
F
⁡
0
+
1
=
S
D
S
D
n
F
⁡
0
6
dvn0
⊢
S
⊆
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
S
→
S
D
n
F
⁡
0
=
F
7
6
oveq2d
⊢
S
⊆
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
S
→
S
D
S
D
n
F
⁡
0
=
S
D
F
8
5
7
eqtrd
⊢
S
⊆
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
S
→
S
D
n
F
⁡
0
+
1
=
S
D
F
9
2
8
eqtr3id
⊢
S
⊆
ℂ
∧
F
∈
ℂ
↑
𝑝𝑚
S
→
S
D
n
F
⁡
1
=
S
D
F