Metamath Proof Explorer


Theorem dvn2bss

Description: An N-times differentiable point is an M-times differentiable point, if M <_ N . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Assertion dvn2bss S F 𝑝𝑚 S M 0 N dom S D n F N dom S D n F M

Proof

Step Hyp Ref Expression
1 simp1 S F 𝑝𝑚 S M 0 N S
2 simp2 S F 𝑝𝑚 S M 0 N F 𝑝𝑚 S
3 elfznn0 M 0 N M 0
4 3 3ad2ant3 S F 𝑝𝑚 S M 0 N M 0
5 elfzuz3 M 0 N N M
6 5 3ad2ant3 S F 𝑝𝑚 S M 0 N N M
7 uznn0sub N M N M 0
8 6 7 syl S F 𝑝𝑚 S M 0 N N M 0
9 dvnadd S F 𝑝𝑚 S M 0 N M 0 S D n S D n F M N M = S D n F M + N - M
10 1 2 4 8 9 syl22anc S F 𝑝𝑚 S M 0 N S D n S D n F M N M = S D n F M + N - M
11 4 nn0cnd S F 𝑝𝑚 S M 0 N M
12 elfzuz2 M 0 N N 0
13 12 3ad2ant3 S F 𝑝𝑚 S M 0 N N 0
14 nn0uz 0 = 0
15 13 14 eleqtrrdi S F 𝑝𝑚 S M 0 N N 0
16 15 nn0cnd S F 𝑝𝑚 S M 0 N N
17 11 16 pncan3d S F 𝑝𝑚 S M 0 N M + N - M = N
18 17 fveq2d S F 𝑝𝑚 S M 0 N S D n F M + N - M = S D n F N
19 10 18 eqtrd S F 𝑝𝑚 S M 0 N S D n S D n F M N M = S D n F N
20 19 dmeqd S F 𝑝𝑚 S M 0 N dom S D n S D n F M N M = dom S D n F N
21 cnex V
22 21 a1i S F 𝑝𝑚 S M 0 N V
23 dvnf S F 𝑝𝑚 S M 0 S D n F M : dom S D n F M
24 3 23 syl3an3 S F 𝑝𝑚 S M 0 N S D n F M : dom S D n F M
25 dvnbss S F 𝑝𝑚 S M 0 dom S D n F M dom F
26 3 25 syl3an3 S F 𝑝𝑚 S M 0 N dom S D n F M dom F
27 elpmi F 𝑝𝑚 S F : dom F dom F S
28 27 3ad2ant2 S F 𝑝𝑚 S M 0 N F : dom F dom F S
29 28 simprd S F 𝑝𝑚 S M 0 N dom F S
30 26 29 sstrd S F 𝑝𝑚 S M 0 N dom S D n F M S
31 elpm2r V S S D n F M : dom S D n F M dom S D n F M S S D n F M 𝑝𝑚 S
32 22 1 24 30 31 syl22anc S F 𝑝𝑚 S M 0 N S D n F M 𝑝𝑚 S
33 dvnbss S S D n F M 𝑝𝑚 S N M 0 dom S D n S D n F M N M dom S D n F M
34 1 32 8 33 syl3anc S F 𝑝𝑚 S M 0 N dom S D n S D n F M N M dom S D n F M
35 20 34 eqsstrrd S F 𝑝𝑚 S M 0 N dom S D n F N dom S D n F M