Metamath Proof Explorer


Theorem dvnadd

Description: The N -th derivative of the M -th derivative of F is the same as the M + N -th derivative of F . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion dvnadd S F 𝑝𝑚 S M 0 N 0 S D n S D n F M N = S D n F M + N

Proof

Step Hyp Ref Expression
1 fveq2 n = 0 S D n S D n F M n = S D n S D n F M 0
2 oveq2 n = 0 M + n = M + 0
3 2 fveq2d n = 0 S D n F M + n = S D n F M + 0
4 1 3 eqeq12d n = 0 S D n S D n F M n = S D n F M + n S D n S D n F M 0 = S D n F M + 0
5 4 imbi2d n = 0 S F 𝑝𝑚 S M 0 S D n S D n F M n = S D n F M + n S F 𝑝𝑚 S M 0 S D n S D n F M 0 = S D n F M + 0
6 fveq2 n = k S D n S D n F M n = S D n S D n F M k
7 oveq2 n = k M + n = M + k
8 7 fveq2d n = k S D n F M + n = S D n F M + k
9 6 8 eqeq12d n = k S D n S D n F M n = S D n F M + n S D n S D n F M k = S D n F M + k
10 9 imbi2d n = k S F 𝑝𝑚 S M 0 S D n S D n F M n = S D n F M + n S F 𝑝𝑚 S M 0 S D n S D n F M k = S D n F M + k
11 fveq2 n = k + 1 S D n S D n F M n = S D n S D n F M k + 1
12 oveq2 n = k + 1 M + n = M + k + 1
13 12 fveq2d n = k + 1 S D n F M + n = S D n F M + k + 1
14 11 13 eqeq12d n = k + 1 S D n S D n F M n = S D n F M + n S D n S D n F M k + 1 = S D n F M + k + 1
15 14 imbi2d n = k + 1 S F 𝑝𝑚 S M 0 S D n S D n F M n = S D n F M + n S F 𝑝𝑚 S M 0 S D n S D n F M k + 1 = S D n F M + k + 1
16 fveq2 n = N S D n S D n F M n = S D n S D n F M N
17 oveq2 n = N M + n = M + N
18 17 fveq2d n = N S D n F M + n = S D n F M + N
19 16 18 eqeq12d n = N S D n S D n F M n = S D n F M + n S D n S D n F M N = S D n F M + N
20 19 imbi2d n = N S F 𝑝𝑚 S M 0 S D n S D n F M n = S D n F M + n S F 𝑝𝑚 S M 0 S D n S D n F M N = S D n F M + N
21 recnprss S S
22 21 ad2antrr S F 𝑝𝑚 S M 0 S
23 ssidd S F 𝑝𝑚 S
24 cnex V
25 elpm2g V S F 𝑝𝑚 S F : dom F dom F S
26 24 25 mpan S F 𝑝𝑚 S F : dom F dom F S
27 26 simplbda S F 𝑝𝑚 S dom F S
28 24 a1i S F 𝑝𝑚 S V
29 simpl S F 𝑝𝑚 S S
30 pmss12g dom F S V S 𝑝𝑚 dom F 𝑝𝑚 S
31 23 27 28 29 30 syl22anc S F 𝑝𝑚 S 𝑝𝑚 dom F 𝑝𝑚 S
32 31 adantr S F 𝑝𝑚 S M 0 𝑝𝑚 dom F 𝑝𝑚 S
33 dvnff S F 𝑝𝑚 S S D n F : 0 𝑝𝑚 dom F
34 33 ffvelrnda S F 𝑝𝑚 S M 0 S D n F M 𝑝𝑚 dom F
35 32 34 sseldd S F 𝑝𝑚 S M 0 S D n F M 𝑝𝑚 S
36 dvn0 S S D n F M 𝑝𝑚 S S D n S D n F M 0 = S D n F M
37 22 35 36 syl2anc S F 𝑝𝑚 S M 0 S D n S D n F M 0 = S D n F M
38 nn0cn M 0 M
39 38 adantl S F 𝑝𝑚 S M 0 M
40 39 addid1d S F 𝑝𝑚 S M 0 M + 0 = M
41 40 fveq2d S F 𝑝𝑚 S M 0 S D n F M + 0 = S D n F M
42 37 41 eqtr4d S F 𝑝𝑚 S M 0 S D n S D n F M 0 = S D n F M + 0
43 oveq2 S D n S D n F M k = S D n F M + k S D S D n S D n F M k = S D S D n F M + k
44 22 adantr S F 𝑝𝑚 S M 0 k 0 S
45 35 adantr S F 𝑝𝑚 S M 0 k 0 S D n F M 𝑝𝑚 S
46 simpr S F 𝑝𝑚 S M 0 k 0 k 0
47 dvnp1 S S D n F M 𝑝𝑚 S k 0 S D n S D n F M k + 1 = S D S D n S D n F M k
48 44 45 46 47 syl3anc S F 𝑝𝑚 S M 0 k 0 S D n S D n F M k + 1 = S D S D n S D n F M k
49 39 adantr S F 𝑝𝑚 S M 0 k 0 M
50 nn0cn k 0 k
51 50 adantl S F 𝑝𝑚 S M 0 k 0 k
52 1cnd S F 𝑝𝑚 S M 0 k 0 1
53 49 51 52 addassd S F 𝑝𝑚 S M 0 k 0 M + k + 1 = M + k + 1
54 53 fveq2d S F 𝑝𝑚 S M 0 k 0 S D n F M + k + 1 = S D n F M + k + 1
55 simpllr S F 𝑝𝑚 S M 0 k 0 F 𝑝𝑚 S
56 nn0addcl M 0 k 0 M + k 0
57 56 adantll S F 𝑝𝑚 S M 0 k 0 M + k 0
58 dvnp1 S F 𝑝𝑚 S M + k 0 S D n F M + k + 1 = S D S D n F M + k
59 44 55 57 58 syl3anc S F 𝑝𝑚 S M 0 k 0 S D n F M + k + 1 = S D S D n F M + k
60 54 59 eqtr3d S F 𝑝𝑚 S M 0 k 0 S D n F M + k + 1 = S D S D n F M + k
61 48 60 eqeq12d S F 𝑝𝑚 S M 0 k 0 S D n S D n F M k + 1 = S D n F M + k + 1 S D S D n S D n F M k = S D S D n F M + k
62 43 61 syl5ibr S F 𝑝𝑚 S M 0 k 0 S D n S D n F M k = S D n F M + k S D n S D n F M k + 1 = S D n F M + k + 1
63 62 expcom k 0 S F 𝑝𝑚 S M 0 S D n S D n F M k = S D n F M + k S D n S D n F M k + 1 = S D n F M + k + 1
64 63 a2d k 0 S F 𝑝𝑚 S M 0 S D n S D n F M k = S D n F M + k S F 𝑝𝑚 S M 0 S D n S D n F M k + 1 = S D n F M + k + 1
65 5 10 15 20 42 64 nn0ind N 0 S F 𝑝𝑚 S M 0 S D n S D n F M N = S D n F M + N
66 65 com12 S F 𝑝𝑚 S M 0 N 0 S D n S D n F M N = S D n F M + N
67 66 impr S F 𝑝𝑚 S M 0 N 0 S D n S D n F M N = S D n F M + N