Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|
2 |
|
oveq2 |
|
3 |
2
|
fveq2d |
|
4 |
1 3
|
eqeq12d |
|
5 |
4
|
imbi2d |
|
6 |
|
fveq2 |
|
7 |
|
oveq2 |
|
8 |
7
|
fveq2d |
|
9 |
6 8
|
eqeq12d |
|
10 |
9
|
imbi2d |
|
11 |
|
fveq2 |
|
12 |
|
oveq2 |
|
13 |
12
|
fveq2d |
|
14 |
11 13
|
eqeq12d |
|
15 |
14
|
imbi2d |
|
16 |
|
fveq2 |
|
17 |
|
oveq2 |
|
18 |
17
|
fveq2d |
|
19 |
16 18
|
eqeq12d |
|
20 |
19
|
imbi2d |
|
21 |
|
recnprss |
|
22 |
21
|
ad2antrr |
|
23 |
|
ssidd |
|
24 |
|
cnex |
|
25 |
|
elpm2g |
|
26 |
24 25
|
mpan |
|
27 |
26
|
simplbda |
|
28 |
24
|
a1i |
|
29 |
|
simpl |
|
30 |
|
pmss12g |
|
31 |
23 27 28 29 30
|
syl22anc |
|
32 |
31
|
adantr |
|
33 |
|
dvnff |
|
34 |
33
|
ffvelrnda |
|
35 |
32 34
|
sseldd |
|
36 |
|
dvn0 |
|
37 |
22 35 36
|
syl2anc |
|
38 |
|
nn0cn |
|
39 |
38
|
adantl |
|
40 |
39
|
addid1d |
|
41 |
40
|
fveq2d |
|
42 |
37 41
|
eqtr4d |
|
43 |
|
oveq2 |
|
44 |
22
|
adantr |
|
45 |
35
|
adantr |
|
46 |
|
simpr |
|
47 |
|
dvnp1 |
|
48 |
44 45 46 47
|
syl3anc |
|
49 |
39
|
adantr |
|
50 |
|
nn0cn |
|
51 |
50
|
adantl |
|
52 |
|
1cnd |
|
53 |
49 51 52
|
addassd |
|
54 |
53
|
fveq2d |
|
55 |
|
simpllr |
|
56 |
|
nn0addcl |
|
57 |
56
|
adantll |
|
58 |
|
dvnp1 |
|
59 |
44 55 57 58
|
syl3anc |
|
60 |
54 59
|
eqtr3d |
|
61 |
48 60
|
eqeq12d |
|
62 |
43 61
|
syl5ibr |
|
63 |
62
|
expcom |
|
64 |
63
|
a2d |
|
65 |
5 10 15 20 42 64
|
nn0ind |
|
66 |
65
|
com12 |
|
67 |
66
|
impr |
|