| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvne0.a |
|
| 2 |
|
dvne0.b |
|
| 3 |
|
dvne0.f |
|
| 4 |
|
dvne0.d |
|
| 5 |
|
dvne0.z |
|
| 6 |
|
eleq1 |
|
| 7 |
6
|
notbid |
|
| 8 |
5 7
|
syl5ibrcom |
|
| 9 |
8
|
necon2ad |
|
| 10 |
9
|
imp |
|
| 11 |
|
cncff |
|
| 12 |
3 11
|
syl |
|
| 13 |
|
iccssre |
|
| 14 |
1 2 13
|
syl2anc |
|
| 15 |
|
dvfre |
|
| 16 |
12 14 15
|
syl2anc |
|
| 17 |
16
|
frnd |
|
| 18 |
17
|
sselda |
|
| 19 |
|
0re |
|
| 20 |
|
lttri2 |
|
| 21 |
18 19 20
|
sylancl |
|
| 22 |
|
0xr |
|
| 23 |
|
elioomnf |
|
| 24 |
22 23
|
ax-mp |
|
| 25 |
24
|
baib |
|
| 26 |
|
elrp |
|
| 27 |
26
|
baib |
|
| 28 |
25 27
|
orbi12d |
|
| 29 |
18 28
|
syl |
|
| 30 |
21 29
|
bitr4d |
|
| 31 |
10 30
|
mpbid |
|
| 32 |
|
elun |
|
| 33 |
31 32
|
sylibr |
|
| 34 |
33
|
ex |
|
| 35 |
34
|
ssrdv |
|
| 36 |
|
disjssun |
|
| 37 |
35 36
|
syl5ibcom |
|
| 38 |
37
|
imp |
|
| 39 |
1
|
adantr |
|
| 40 |
2
|
adantr |
|
| 41 |
3
|
adantr |
|
| 42 |
4
|
feq2d |
|
| 43 |
16 42
|
mpbid |
|
| 44 |
43
|
ffnd |
|
| 45 |
44
|
anim1i |
|
| 46 |
|
df-f |
|
| 47 |
45 46
|
sylibr |
|
| 48 |
39 40 41 47
|
dvgt0 |
|
| 49 |
48
|
orcd |
|
| 50 |
38 49
|
syldan |
|
| 51 |
|
n0 |
|
| 52 |
|
elin |
|
| 53 |
|
fvelrnb |
|
| 54 |
44 53
|
syl |
|
| 55 |
1
|
adantr |
|
| 56 |
2
|
adantr |
|
| 57 |
3
|
adantr |
|
| 58 |
44
|
adantr |
|
| 59 |
43
|
adantr |
|
| 60 |
59
|
ffvelcdmda |
|
| 61 |
5
|
ad2antrr |
|
| 62 |
|
simplrl |
|
| 63 |
|
simprl |
|
| 64 |
|
ioossicc |
|
| 65 |
|
rescncf |
|
| 66 |
64 3 65
|
mpsyl |
|
| 67 |
66
|
ad2antrr |
|
| 68 |
|
ax-resscn |
|
| 69 |
68
|
a1i |
|
| 70 |
|
fss |
|
| 71 |
12 68 70
|
sylancl |
|
| 72 |
64 14
|
sstrid |
|
| 73 |
|
eqid |
|
| 74 |
|
tgioo4 |
|
| 75 |
73 74
|
dvres |
|
| 76 |
69 71 14 72 75
|
syl22anc |
|
| 77 |
|
retop |
|
| 78 |
|
iooretop |
|
| 79 |
|
isopn3i |
|
| 80 |
77 78 79
|
mp2an |
|
| 81 |
80
|
reseq2i |
|
| 82 |
|
fnresdm |
|
| 83 |
44 82
|
syl |
|
| 84 |
81 83
|
eqtrid |
|
| 85 |
76 84
|
eqtrd |
|
| 86 |
85
|
dmeqd |
|
| 87 |
86 4
|
eqtrd |
|
| 88 |
87
|
ad2antrr |
|
| 89 |
62 63 67 88
|
dvivth |
|
| 90 |
85
|
ad2antrr |
|
| 91 |
90
|
fveq1d |
|
| 92 |
90
|
fveq1d |
|
| 93 |
91 92
|
oveq12d |
|
| 94 |
90
|
rneqd |
|
| 95 |
89 93 94
|
3sstr3d |
|
| 96 |
19
|
a1i |
|
| 97 |
|
simplrr |
|
| 98 |
|
elioomnf |
|
| 99 |
22 98
|
ax-mp |
|
| 100 |
97 99
|
sylib |
|
| 101 |
100
|
simprd |
|
| 102 |
100
|
simpld |
|
| 103 |
|
ltle |
|
| 104 |
102 19 103
|
sylancl |
|
| 105 |
101 104
|
mpd |
|
| 106 |
|
simprr |
|
| 107 |
63 60
|
syldan |
|
| 108 |
|
elicc2 |
|
| 109 |
102 107 108
|
syl2anc |
|
| 110 |
96 105 106 109
|
mpbir3and |
|
| 111 |
95 110
|
sseldd |
|
| 112 |
111
|
expr |
|
| 113 |
61 112
|
mtod |
|
| 114 |
|
ltnle |
|
| 115 |
60 19 114
|
sylancl |
|
| 116 |
113 115
|
mpbird |
|
| 117 |
|
elioomnf |
|
| 118 |
22 117
|
ax-mp |
|
| 119 |
60 116 118
|
sylanbrc |
|
| 120 |
119
|
ralrimiva |
|
| 121 |
|
ffnfv |
|
| 122 |
58 120 121
|
sylanbrc |
|
| 123 |
55 56 57 122
|
dvlt0 |
|
| 124 |
123
|
olcd |
|
| 125 |
124
|
expr |
|
| 126 |
|
eleq1 |
|
| 127 |
126
|
imbi1d |
|
| 128 |
125 127
|
syl5ibcom |
|
| 129 |
128
|
rexlimdva |
|
| 130 |
54 129
|
sylbid |
|
| 131 |
130
|
impd |
|
| 132 |
52 131
|
biimtrid |
|
| 133 |
132
|
exlimdv |
|
| 134 |
51 133
|
biimtrid |
|
| 135 |
134
|
imp |
|
| 136 |
50 135
|
pm2.61dane |
|