Metamath Proof Explorer


Theorem dvne0

Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses dvne0.a φ A
dvne0.b φ B
dvne0.f φ F : A B cn
dvne0.d φ dom F = A B
dvne0.z φ ¬ 0 ran F
Assertion dvne0 φ F Isom < , < A B ran F F Isom < , < -1 A B ran F

Proof

Step Hyp Ref Expression
1 dvne0.a φ A
2 dvne0.b φ B
3 dvne0.f φ F : A B cn
4 dvne0.d φ dom F = A B
5 dvne0.z φ ¬ 0 ran F
6 eleq1 x = 0 x ran F 0 ran F
7 6 notbid x = 0 ¬ x ran F ¬ 0 ran F
8 5 7 syl5ibrcom φ x = 0 ¬ x ran F
9 8 necon2ad φ x ran F x 0
10 9 imp φ x ran F x 0
11 cncff F : A B cn F : A B
12 3 11 syl φ F : A B
13 iccssre A B A B
14 1 2 13 syl2anc φ A B
15 dvfre F : A B A B F : dom F
16 12 14 15 syl2anc φ F : dom F
17 16 frnd φ ran F
18 17 sselda φ x ran F x
19 0re 0
20 lttri2 x 0 x 0 x < 0 0 < x
21 18 19 20 sylancl φ x ran F x 0 x < 0 0 < x
22 0xr 0 *
23 elioomnf 0 * x −∞ 0 x x < 0
24 22 23 ax-mp x −∞ 0 x x < 0
25 24 baib x x −∞ 0 x < 0
26 elrp x + x 0 < x
27 26 baib x x + 0 < x
28 25 27 orbi12d x x −∞ 0 x + x < 0 0 < x
29 18 28 syl φ x ran F x −∞ 0 x + x < 0 0 < x
30 21 29 bitr4d φ x ran F x 0 x −∞ 0 x +
31 10 30 mpbid φ x ran F x −∞ 0 x +
32 elun x −∞ 0 + x −∞ 0 x +
33 31 32 sylibr φ x ran F x −∞ 0 +
34 33 ex φ x ran F x −∞ 0 +
35 34 ssrdv φ ran F −∞ 0 +
36 disjssun ran F −∞ 0 = ran F −∞ 0 + ran F +
37 35 36 syl5ibcom φ ran F −∞ 0 = ran F +
38 37 imp φ ran F −∞ 0 = ran F +
39 1 adantr φ ran F + A
40 2 adantr φ ran F + B
41 3 adantr φ ran F + F : A B cn
42 4 feq2d φ F : dom F F : A B
43 16 42 mpbid φ F : A B
44 43 ffnd φ F Fn A B
45 44 anim1i φ ran F + F Fn A B ran F +
46 df-f F : A B + F Fn A B ran F +
47 45 46 sylibr φ ran F + F : A B +
48 39 40 41 47 dvgt0 φ ran F + F Isom < , < A B ran F
49 48 orcd φ ran F + F Isom < , < A B ran F F Isom < , < -1 A B ran F
50 38 49 syldan φ ran F −∞ 0 = F Isom < , < A B ran F F Isom < , < -1 A B ran F
51 n0 ran F −∞ 0 x x ran F −∞ 0
52 elin x ran F −∞ 0 x ran F x −∞ 0
53 fvelrnb F Fn A B x ran F y A B F y = x
54 44 53 syl φ x ran F y A B F y = x
55 1 adantr φ y A B F y −∞ 0 A
56 2 adantr φ y A B F y −∞ 0 B
57 3 adantr φ y A B F y −∞ 0 F : A B cn
58 44 adantr φ y A B F y −∞ 0 F Fn A B
59 43 adantr φ y A B F y −∞ 0 F : A B
60 59 ffvelrnda φ y A B F y −∞ 0 z A B F z
61 5 ad2antrr φ y A B F y −∞ 0 z A B ¬ 0 ran F
62 simplrl φ y A B F y −∞ 0 z A B 0 F z y A B
63 simprl φ y A B F y −∞ 0 z A B 0 F z z A B
64 ioossicc A B A B
65 rescncf A B A B F : A B cn F A B : A B cn
66 64 3 65 mpsyl φ F A B : A B cn
67 66 ad2antrr φ y A B F y −∞ 0 z A B 0 F z F A B : A B cn
68 ax-resscn
69 68 a1i φ
70 fss F : A B F : A B
71 12 68 70 sylancl φ F : A B
72 64 14 sstrid φ A B
73 eqid TopOpen fld = TopOpen fld
74 73 tgioo2 topGen ran . = TopOpen fld 𝑡
75 73 74 dvres F : A B A B A B D F A B = F int topGen ran . A B
76 69 71 14 72 75 syl22anc φ D F A B = F int topGen ran . A B
77 retop topGen ran . Top
78 iooretop A B topGen ran .
79 isopn3i topGen ran . Top A B topGen ran . int topGen ran . A B = A B
80 77 78 79 mp2an int topGen ran . A B = A B
81 80 reseq2i F int topGen ran . A B = F A B
82 fnresdm F Fn A B F A B = D F
83 44 82 syl φ F A B = D F
84 81 83 eqtrid φ F int topGen ran . A B = D F
85 76 84 eqtrd φ D F A B = D F
86 85 dmeqd φ dom F A B = dom F
87 86 4 eqtrd φ dom F A B = A B
88 87 ad2antrr φ y A B F y −∞ 0 z A B 0 F z dom F A B = A B
89 62 63 67 88 dvivth φ y A B F y −∞ 0 z A B 0 F z F A B y F A B z ran F A B
90 85 ad2antrr φ y A B F y −∞ 0 z A B 0 F z D F A B = D F
91 90 fveq1d φ y A B F y −∞ 0 z A B 0 F z F A B y = F y
92 90 fveq1d φ y A B F y −∞ 0 z A B 0 F z F A B z = F z
93 91 92 oveq12d φ y A B F y −∞ 0 z A B 0 F z F A B y F A B z = F y F z
94 90 rneqd φ y A B F y −∞ 0 z A B 0 F z ran F A B = ran F
95 89 93 94 3sstr3d φ y A B F y −∞ 0 z A B 0 F z F y F z ran F
96 19 a1i φ y A B F y −∞ 0 z A B 0 F z 0
97 simplrr φ y A B F y −∞ 0 z A B 0 F z F y −∞ 0
98 elioomnf 0 * F y −∞ 0 F y F y < 0
99 22 98 ax-mp F y −∞ 0 F y F y < 0
100 97 99 sylib φ y A B F y −∞ 0 z A B 0 F z F y F y < 0
101 100 simprd φ y A B F y −∞ 0 z A B 0 F z F y < 0
102 100 simpld φ y A B F y −∞ 0 z A B 0 F z F y
103 ltle F y 0 F y < 0 F y 0
104 102 19 103 sylancl φ y A B F y −∞ 0 z A B 0 F z F y < 0 F y 0
105 101 104 mpd φ y A B F y −∞ 0 z A B 0 F z F y 0
106 simprr φ y A B F y −∞ 0 z A B 0 F z 0 F z
107 63 60 syldan φ y A B F y −∞ 0 z A B 0 F z F z
108 elicc2 F y F z 0 F y F z 0 F y 0 0 F z
109 102 107 108 syl2anc φ y A B F y −∞ 0 z A B 0 F z 0 F y F z 0 F y 0 0 F z
110 96 105 106 109 mpbir3and φ y A B F y −∞ 0 z A B 0 F z 0 F y F z
111 95 110 sseldd φ y A B F y −∞ 0 z A B 0 F z 0 ran F
112 111 expr φ y A B F y −∞ 0 z A B 0 F z 0 ran F
113 61 112 mtod φ y A B F y −∞ 0 z A B ¬ 0 F z
114 ltnle F z 0 F z < 0 ¬ 0 F z
115 60 19 114 sylancl φ y A B F y −∞ 0 z A B F z < 0 ¬ 0 F z
116 113 115 mpbird φ y A B F y −∞ 0 z A B F z < 0
117 elioomnf 0 * F z −∞ 0 F z F z < 0
118 22 117 ax-mp F z −∞ 0 F z F z < 0
119 60 116 118 sylanbrc φ y A B F y −∞ 0 z A B F z −∞ 0
120 119 ralrimiva φ y A B F y −∞ 0 z A B F z −∞ 0
121 ffnfv F : A B −∞ 0 F Fn A B z A B F z −∞ 0
122 58 120 121 sylanbrc φ y A B F y −∞ 0 F : A B −∞ 0
123 55 56 57 122 dvlt0 φ y A B F y −∞ 0 F Isom < , < -1 A B ran F
124 123 olcd φ y A B F y −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
125 124 expr φ y A B F y −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
126 eleq1 F y = x F y −∞ 0 x −∞ 0
127 126 imbi1d F y = x F y −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F x −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
128 125 127 syl5ibcom φ y A B F y = x x −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
129 128 rexlimdva φ y A B F y = x x −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
130 54 129 sylbid φ x ran F x −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
131 130 impd φ x ran F x −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
132 52 131 syl5bi φ x ran F −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
133 132 exlimdv φ x x ran F −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
134 51 133 syl5bi φ ran F −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
135 134 imp φ ran F −∞ 0 F Isom < , < A B ran F F Isom < , < -1 A B ran F
136 50 135 pm2.61dane φ F Isom < , < A B ran F F Isom < , < -1 A B ran F