Metamath Proof Explorer


Theorem dvne0f1

Description: A function on a closed interval with nonzero derivative is one-to-one. (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses dvne0.a φ A
dvne0.b φ B
dvne0.f φ F : A B cn
dvne0.d φ dom F = A B
dvne0.z φ ¬ 0 ran F
Assertion dvne0f1 φ F : A B 1-1

Proof

Step Hyp Ref Expression
1 dvne0.a φ A
2 dvne0.b φ B
3 dvne0.f φ F : A B cn
4 dvne0.d φ dom F = A B
5 dvne0.z φ ¬ 0 ran F
6 1 2 3 4 5 dvne0 φ F Isom < , < A B ran F F Isom < , < -1 A B ran F
7 isof1o F Isom < , < A B ran F F : A B 1-1 onto ran F
8 isof1o F Isom < , < -1 A B ran F F : A B 1-1 onto ran F
9 7 8 jaoi F Isom < , < A B ran F F Isom < , < -1 A B ran F F : A B 1-1 onto ran F
10 f1of1 F : A B 1-1 onto ran F F : A B 1-1 ran F
11 6 9 10 3syl φ F : A B 1-1 ran F
12 cncff F : A B cn F : A B
13 frn F : A B ran F
14 3 12 13 3syl φ ran F
15 f1ss F : A B 1-1 ran F ran F F : A B 1-1
16 11 14 15 syl2anc φ F : A B 1-1