Metamath Proof Explorer


Theorem dvnff

Description: The iterated derivative is a function. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion dvnff S F 𝑝𝑚 S S D n F : 0 𝑝𝑚 dom F

Proof

Step Hyp Ref Expression
1 nn0uz 0 = 0
2 0zd S F 𝑝𝑚 S 0
3 fvconst2g F 𝑝𝑚 S k 0 0 × F k = F
4 3 adantll S F 𝑝𝑚 S k 0 0 × F k = F
5 dmexg F 𝑝𝑚 S dom F V
6 5 ad2antlr S F 𝑝𝑚 S k 0 dom F V
7 cnex V
8 7 a1i S F 𝑝𝑚 S k 0 V
9 elpm2g V S F 𝑝𝑚 S F : dom F dom F S
10 7 9 mpan S F 𝑝𝑚 S F : dom F dom F S
11 10 biimpa S F 𝑝𝑚 S F : dom F dom F S
12 11 simpld S F 𝑝𝑚 S F : dom F
13 12 adantr S F 𝑝𝑚 S k 0 F : dom F
14 fpmg dom F V V F : dom F F 𝑝𝑚 dom F
15 6 8 13 14 syl3anc S F 𝑝𝑚 S k 0 F 𝑝𝑚 dom F
16 4 15 eqeltrd S F 𝑝𝑚 S k 0 0 × F k 𝑝𝑚 dom F
17 vex k V
18 vex n V
19 17 18 opco1i k x V S D x 1 st n = x V S D x k
20 oveq2 x = k S D x = S D k
21 eqid x V S D x = x V S D x
22 ovex S D k V
23 20 21 22 fvmpt k V x V S D x k = S D k
24 23 elv x V S D x k = S D k
25 19 24 eqtri k x V S D x 1 st n = S D k
26 7 a1i S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F V
27 5 ad2antlr S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F dom F V
28 dvfg S k S : dom k S
29 28 ad2antrr S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F k S : dom k S
30 recnprss S S
31 30 ad2antrr S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F S
32 simprl S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F k 𝑝𝑚 dom F
33 elpm2g V dom F V k 𝑝𝑚 dom F k : dom k dom k dom F
34 7 27 33 sylancr S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F k 𝑝𝑚 dom F k : dom k dom k dom F
35 32 34 mpbid S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F k : dom k dom k dom F
36 35 simpld S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F k : dom k
37 35 simprd S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F dom k dom F
38 11 simprd S F 𝑝𝑚 S dom F S
39 38 adantr S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F dom F S
40 37 39 sstrd S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F dom k S
41 31 36 40 dvbss S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F dom k S dom k
42 41 37 sstrd S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F dom k S dom F
43 elpm2r V dom F V k S : dom k S dom k S dom F S D k 𝑝𝑚 dom F
44 26 27 29 42 43 syl22anc S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F S D k 𝑝𝑚 dom F
45 25 44 eqeltrid S F 𝑝𝑚 S k 𝑝𝑚 dom F n 𝑝𝑚 dom F k x V S D x 1 st n 𝑝𝑚 dom F
46 1 2 16 45 seqf S F 𝑝𝑚 S seq 0 x V S D x 1 st 0 × F : 0 𝑝𝑚 dom F
47 21 dvnfval S F 𝑝𝑚 S S D n F = seq 0 x V S D x 1 st 0 × F
48 30 47 sylan S F 𝑝𝑚 S S D n F = seq 0 x V S D x 1 st 0 × F
49 48 feq1d S F 𝑝𝑚 S S D n F : 0 𝑝𝑚 dom F seq 0 x V S D x 1 st 0 × F : 0 𝑝𝑚 dom F
50 46 49 mpbird S F 𝑝𝑚 S S D n F : 0 𝑝𝑚 dom F