Metamath Proof Explorer


Theorem dvnfval

Description: Value of the iterated derivative. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypothesis dvnfval.1 G = x V S D x
Assertion dvnfval S F 𝑝𝑚 S S D n F = seq 0 G 1 st 0 × F

Proof

Step Hyp Ref Expression
1 dvnfval.1 G = x V S D x
2 df-dvn D n = s 𝒫 , f 𝑝𝑚 s seq 0 x V s D x 1 st 0 × f
3 2 a1i S F 𝑝𝑚 S D n = s 𝒫 , f 𝑝𝑚 s seq 0 x V s D x 1 st 0 × f
4 simprl S F 𝑝𝑚 S s = S f = F s = S
5 4 oveq1d S F 𝑝𝑚 S s = S f = F s D x = S D x
6 5 mpteq2dv S F 𝑝𝑚 S s = S f = F x V s D x = x V S D x
7 6 1 eqtr4di S F 𝑝𝑚 S s = S f = F x V s D x = G
8 7 coeq1d S F 𝑝𝑚 S s = S f = F x V s D x 1 st = G 1 st
9 8 seqeq2d S F 𝑝𝑚 S s = S f = F seq 0 x V s D x 1 st 0 × f = seq 0 G 1 st 0 × f
10 simprr S F 𝑝𝑚 S s = S f = F f = F
11 10 sneqd S F 𝑝𝑚 S s = S f = F f = F
12 11 xpeq2d S F 𝑝𝑚 S s = S f = F 0 × f = 0 × F
13 12 seqeq3d S F 𝑝𝑚 S s = S f = F seq 0 G 1 st 0 × f = seq 0 G 1 st 0 × F
14 9 13 eqtrd S F 𝑝𝑚 S s = S f = F seq 0 x V s D x 1 st 0 × f = seq 0 G 1 st 0 × F
15 simpr S F 𝑝𝑚 S s = S s = S
16 15 oveq2d S F 𝑝𝑚 S s = S 𝑝𝑚 s = 𝑝𝑚 S
17 simpl S F 𝑝𝑚 S S
18 cnex V
19 18 elpw2 S 𝒫 S
20 17 19 sylibr S F 𝑝𝑚 S S 𝒫
21 simpr S F 𝑝𝑚 S F 𝑝𝑚 S
22 seqex seq 0 G 1 st 0 × F V
23 22 a1i S F 𝑝𝑚 S seq 0 G 1 st 0 × F V
24 3 14 16 20 21 23 ovmpodx S F 𝑝𝑚 S S D n F = seq 0 G 1 st 0 × F