| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvnmptconst.s |  | 
						
							| 2 |  | dvnmptconst.x |  | 
						
							| 3 |  | dvnmptconst.a |  | 
						
							| 4 |  | dvnmptconst.n |  | 
						
							| 5 |  | id |  | 
						
							| 6 |  | fveq2 |  | 
						
							| 7 | 6 | eqeq1d |  | 
						
							| 8 | 7 | imbi2d |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 | 9 | eqeq1d |  | 
						
							| 11 | 10 | imbi2d |  | 
						
							| 12 |  | fveq2 |  | 
						
							| 13 | 12 | eqeq1d |  | 
						
							| 14 | 13 | imbi2d |  | 
						
							| 15 |  | fveq2 |  | 
						
							| 16 | 15 | eqeq1d |  | 
						
							| 17 | 16 | imbi2d |  | 
						
							| 18 |  | recnprss |  | 
						
							| 19 | 1 18 | syl |  | 
						
							| 20 | 3 | adantr |  | 
						
							| 21 |  | restsspw |  | 
						
							| 22 | 21 2 | sselid |  | 
						
							| 23 |  | elpwi |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 |  | cnex |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 | 20 24 26 1 | mptelpm |  | 
						
							| 28 |  | dvn1 |  | 
						
							| 29 | 19 27 28 | syl2anc |  | 
						
							| 30 | 1 2 3 | dvmptconst |  | 
						
							| 31 | 29 30 | eqtrd |  | 
						
							| 32 |  | simp3 |  | 
						
							| 33 |  | simp1 |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 |  | simpl |  | 
						
							| 36 |  | pm3.35 |  | 
						
							| 37 | 34 35 36 | syl2anc |  | 
						
							| 38 | 37 | 3adant1 |  | 
						
							| 39 | 19 | 3ad2ant1 |  | 
						
							| 40 | 27 | 3ad2ant1 |  | 
						
							| 41 |  | nnnn0 |  | 
						
							| 42 | 41 | 3ad2ant2 |  | 
						
							| 43 |  | dvnp1 |  | 
						
							| 44 | 39 40 42 43 | syl3anc |  | 
						
							| 45 |  | oveq2 |  | 
						
							| 46 | 45 | 3ad2ant3 |  | 
						
							| 47 |  | 0cnd |  | 
						
							| 48 | 1 2 47 | dvmptconst |  | 
						
							| 49 | 48 | 3ad2ant1 |  | 
						
							| 50 | 44 46 49 | 3eqtrd |  | 
						
							| 51 | 32 33 38 50 | syl3anc |  | 
						
							| 52 | 51 | 3exp |  | 
						
							| 53 | 8 11 14 17 31 52 | nnind |  | 
						
							| 54 | 4 5 53 | sylc |  |