Metamath Proof Explorer


Theorem dvnmptconst

Description: The N -th derivative of a constant function. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnmptconst.s φ S
dvnmptconst.x φ X TopOpen fld 𝑡 S
dvnmptconst.a φ A
dvnmptconst.n φ N
Assertion dvnmptconst φ S D n x X A N = x X 0

Proof

Step Hyp Ref Expression
1 dvnmptconst.s φ S
2 dvnmptconst.x φ X TopOpen fld 𝑡 S
3 dvnmptconst.a φ A
4 dvnmptconst.n φ N
5 id φ φ
6 fveq2 n = 1 S D n x X A n = S D n x X A 1
7 6 eqeq1d n = 1 S D n x X A n = x X 0 S D n x X A 1 = x X 0
8 7 imbi2d n = 1 φ S D n x X A n = x X 0 φ S D n x X A 1 = x X 0
9 fveq2 n = m S D n x X A n = S D n x X A m
10 9 eqeq1d n = m S D n x X A n = x X 0 S D n x X A m = x X 0
11 10 imbi2d n = m φ S D n x X A n = x X 0 φ S D n x X A m = x X 0
12 fveq2 n = m + 1 S D n x X A n = S D n x X A m + 1
13 12 eqeq1d n = m + 1 S D n x X A n = x X 0 S D n x X A m + 1 = x X 0
14 13 imbi2d n = m + 1 φ S D n x X A n = x X 0 φ S D n x X A m + 1 = x X 0
15 fveq2 n = N S D n x X A n = S D n x X A N
16 15 eqeq1d n = N S D n x X A n = x X 0 S D n x X A N = x X 0
17 16 imbi2d n = N φ S D n x X A n = x X 0 φ S D n x X A N = x X 0
18 recnprss S S
19 1 18 syl φ S
20 3 adantr φ x X A
21 restsspw TopOpen fld 𝑡 S 𝒫 S
22 21 2 sselid φ X 𝒫 S
23 elpwi X 𝒫 S X S
24 22 23 syl φ X S
25 cnex V
26 25 a1i φ V
27 20 24 26 1 mptelpm φ x X A 𝑝𝑚 S
28 dvn1 S x X A 𝑝𝑚 S S D n x X A 1 = dx X A dS x
29 19 27 28 syl2anc φ S D n x X A 1 = dx X A dS x
30 1 2 3 dvmptconst φ dx X A dS x = x X 0
31 29 30 eqtrd φ S D n x X A 1 = x X 0
32 simp3 m φ S D n x X A m = x X 0 φ φ
33 simp1 m φ S D n x X A m = x X 0 φ m
34 simpr φ S D n x X A m = x X 0 φ φ
35 simpl φ S D n x X A m = x X 0 φ φ S D n x X A m = x X 0
36 pm3.35 φ φ S D n x X A m = x X 0 S D n x X A m = x X 0
37 34 35 36 syl2anc φ S D n x X A m = x X 0 φ S D n x X A m = x X 0
38 37 3adant1 m φ S D n x X A m = x X 0 φ S D n x X A m = x X 0
39 19 3ad2ant1 φ m S D n x X A m = x X 0 S
40 27 3ad2ant1 φ m S D n x X A m = x X 0 x X A 𝑝𝑚 S
41 nnnn0 m m 0
42 41 3ad2ant2 φ m S D n x X A m = x X 0 m 0
43 dvnp1 S x X A 𝑝𝑚 S m 0 S D n x X A m + 1 = S D S D n x X A m
44 39 40 42 43 syl3anc φ m S D n x X A m = x X 0 S D n x X A m + 1 = S D S D n x X A m
45 oveq2 S D n x X A m = x X 0 S D S D n x X A m = dx X 0 dS x
46 45 3ad2ant3 φ m S D n x X A m = x X 0 S D S D n x X A m = dx X 0 dS x
47 0cnd φ 0
48 1 2 47 dvmptconst φ dx X 0 dS x = x X 0
49 48 3ad2ant1 φ m S D n x X A m = x X 0 dx X 0 dS x = x X 0
50 44 46 49 3eqtrd φ m S D n x X A m = x X 0 S D n x X A m + 1 = x X 0
51 32 33 38 50 syl3anc m φ S D n x X A m = x X 0 φ S D n x X A m + 1 = x X 0
52 51 3exp m φ S D n x X A m = x X 0 φ S D n x X A m + 1 = x X 0
53 8 11 14 17 31 52 nnind N φ S D n x X A N = x X 0
54 4 5 53 sylc φ S D n x X A N = x X 0