Metamath Proof Explorer


Theorem dvnmptdivc

Description: Function-builder for iterated derivative, division rule for constant divisor. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnmptdivc.s φ S
dvnmptdivc.x φ X S
dvnmptdivc.a φ x X A
dvnmptdivc.b φ x X n 0 M B
dvnmptdivc.dvn φ n 0 M S D n x X A n = x X B
dvnmptdivc.c φ C
dvnmptdivc.cne0 φ C 0
dvnmptdivc.8 φ M 0
Assertion dvnmptdivc φ n 0 M S D n x X A C n = x X B C

Proof

Step Hyp Ref Expression
1 dvnmptdivc.s φ S
2 dvnmptdivc.x φ X S
3 dvnmptdivc.a φ x X A
4 dvnmptdivc.b φ x X n 0 M B
5 dvnmptdivc.dvn φ n 0 M S D n x X A n = x X B
6 dvnmptdivc.c φ C
7 dvnmptdivc.cne0 φ C 0
8 dvnmptdivc.8 φ M 0
9 simpr φ n 0 M n 0 M
10 simpl φ n 0 M φ
11 fveq2 k = 0 S D n x X A C k = S D n x X A C 0
12 csbeq1 k = 0 k / n B = 0 / n B
13 12 oveq1d k = 0 k / n B C = 0 / n B C
14 13 mpteq2dv k = 0 x X k / n B C = x X 0 / n B C
15 11 14 eqeq12d k = 0 S D n x X A C k = x X k / n B C S D n x X A C 0 = x X 0 / n B C
16 15 imbi2d k = 0 φ S D n x X A C k = x X k / n B C φ S D n x X A C 0 = x X 0 / n B C
17 fveq2 k = j S D n x X A C k = S D n x X A C j
18 csbeq1 k = j k / n B = j / n B
19 18 oveq1d k = j k / n B C = j / n B C
20 19 mpteq2dv k = j x X k / n B C = x X j / n B C
21 17 20 eqeq12d k = j S D n x X A C k = x X k / n B C S D n x X A C j = x X j / n B C
22 21 imbi2d k = j φ S D n x X A C k = x X k / n B C φ S D n x X A C j = x X j / n B C
23 fveq2 k = j + 1 S D n x X A C k = S D n x X A C j + 1
24 csbeq1 k = j + 1 k / n B = j + 1 / n B
25 24 oveq1d k = j + 1 k / n B C = j + 1 / n B C
26 25 mpteq2dv k = j + 1 x X k / n B C = x X j + 1 / n B C
27 23 26 eqeq12d k = j + 1 S D n x X A C k = x X k / n B C S D n x X A C j + 1 = x X j + 1 / n B C
28 27 imbi2d k = j + 1 φ S D n x X A C k = x X k / n B C φ S D n x X A C j + 1 = x X j + 1 / n B C
29 fveq2 k = n S D n x X A C k = S D n x X A C n
30 csbeq1a n = k B = k / n B
31 30 equcoms k = n B = k / n B
32 31 eqcomd k = n k / n B = B
33 32 oveq1d k = n k / n B C = B C
34 33 mpteq2dv k = n x X k / n B C = x X B C
35 29 34 eqeq12d k = n S D n x X A C k = x X k / n B C S D n x X A C n = x X B C
36 35 imbi2d k = n φ S D n x X A C k = x X k / n B C φ S D n x X A C n = x X B C
37 recnprss S S
38 1 37 syl φ S
39 cnex V
40 39 a1i φ V
41 6 adantr φ x X C
42 7 adantr φ x X C 0
43 3 41 42 divcld φ x X A C
44 43 fmpttd φ x X A C : X
45 elpm2r V S x X A C : X X S x X A C 𝑝𝑚 S
46 40 1 44 2 45 syl22anc φ x X A C 𝑝𝑚 S
47 dvn0 S x X A C 𝑝𝑚 S S D n x X A C 0 = x X A C
48 38 46 47 syl2anc φ S D n x X A C 0 = x X A C
49 id φ φ
50 nn0uz 0 = 0
51 8 50 eleqtrdi φ M 0
52 eluzfz1 M 0 0 0 M
53 51 52 syl φ 0 0 M
54 nfv n φ 0 0 M
55 nfcv _ n S D n x X A 0
56 nfcv _ n X
57 nfcsb1v _ n 0 / n B
58 56 57 nfmpt _ n x X 0 / n B
59 55 58 nfeq n S D n x X A 0 = x X 0 / n B
60 54 59 nfim n φ 0 0 M S D n x X A 0 = x X 0 / n B
61 c0ex 0 V
62 eleq1 n = 0 n 0 M 0 0 M
63 62 anbi2d n = 0 φ n 0 M φ 0 0 M
64 fveq2 n = 0 S D n x X A n = S D n x X A 0
65 csbeq1a n = 0 B = 0 / n B
66 65 mpteq2dv n = 0 x X B = x X 0 / n B
67 64 66 eqeq12d n = 0 S D n x X A n = x X B S D n x X A 0 = x X 0 / n B
68 63 67 imbi12d n = 0 φ n 0 M S D n x X A n = x X B φ 0 0 M S D n x X A 0 = x X 0 / n B
69 60 61 68 5 vtoclf φ 0 0 M S D n x X A 0 = x X 0 / n B
70 49 53 69 syl2anc φ S D n x X A 0 = x X 0 / n B
71 70 fveq1d φ S D n x X A 0 x = x X 0 / n B x
72 71 adantr φ x X S D n x X A 0 x = x X 0 / n B x
73 simpr φ x X x X
74 simpl φ x X φ
75 53 adantr φ x X 0 0 M
76 0re 0
77 nfcv _ n 0
78 nfv n φ x X 0 0 M
79 nfcv _ n
80 57 79 nfel n 0 / n B
81 78 80 nfim n φ x X 0 0 M 0 / n B
82 62 3anbi3d n = 0 φ x X n 0 M φ x X 0 0 M
83 65 eleq1d n = 0 B 0 / n B
84 82 83 imbi12d n = 0 φ x X n 0 M B φ x X 0 0 M 0 / n B
85 77 81 84 4 vtoclgf 0 φ x X 0 0 M 0 / n B
86 76 85 ax-mp φ x X 0 0 M 0 / n B
87 74 73 75 86 syl3anc φ x X 0 / n B
88 eqid x X 0 / n B = x X 0 / n B
89 88 fvmpt2 x X 0 / n B x X 0 / n B x = 0 / n B
90 73 87 89 syl2anc φ x X x X 0 / n B x = 0 / n B
91 72 90 eqtr2d φ x X 0 / n B = S D n x X A 0 x
92 3 fmpttd φ x X A : X
93 elpm2r V S x X A : X X S x X A 𝑝𝑚 S
94 40 1 92 2 93 syl22anc φ x X A 𝑝𝑚 S
95 dvn0 S x X A 𝑝𝑚 S S D n x X A 0 = x X A
96 38 94 95 syl2anc φ S D n x X A 0 = x X A
97 96 fveq1d φ S D n x X A 0 x = x X A x
98 97 adantr φ x X S D n x X A 0 x = x X A x
99 eqid x X A = x X A
100 99 fvmpt2 x X A x X A x = A
101 73 3 100 syl2anc φ x X x X A x = A
102 91 98 101 3eqtrrd φ x X A = 0 / n B
103 102 oveq1d φ x X A C = 0 / n B C
104 103 mpteq2dva φ x X A C = x X 0 / n B C
105 48 104 eqtrd φ S D n x X A C 0 = x X 0 / n B C
106 105 a1i M 0 φ S D n x X A C 0 = x X 0 / n B C
107 simp3 j 0 ..^ M φ S D n x X A C j = x X j / n B C φ φ
108 simp1 j 0 ..^ M φ S D n x X A C j = x X j / n B C φ j 0 ..^ M
109 simpr φ S D n x X A C j = x X j / n B C φ φ
110 simpl φ S D n x X A C j = x X j / n B C φ φ S D n x X A C j = x X j / n B C
111 109 110 mpd φ S D n x X A C j = x X j / n B C φ S D n x X A C j = x X j / n B C
112 111 3adant1 j 0 ..^ M φ S D n x X A C j = x X j / n B C φ S D n x X A C j = x X j / n B C
113 38 ad2antrr φ j 0 ..^ M S D n x X A C j = x X j / n B C S
114 46 ad2antrr φ j 0 ..^ M S D n x X A C j = x X j / n B C x X A C 𝑝𝑚 S
115 elfzofz j 0 ..^ M j 0 M
116 elfznn0 j 0 M j 0
117 116 ad2antlr φ j 0 M S D n x X A C j = x X j / n B C j 0
118 115 117 sylanl2 φ j 0 ..^ M S D n x X A C j = x X j / n B C j 0
119 dvnp1 S x X A C 𝑝𝑚 S j 0 S D n x X A C j + 1 = S D S D n x X A C j
120 113 114 118 119 syl3anc φ j 0 ..^ M S D n x X A C j = x X j / n B C S D n x X A C j + 1 = S D S D n x X A C j
121 oveq2 S D n x X A C j = x X j / n B C S D S D n x X A C j = dx X j / n B C dS x
122 121 adantl φ j 0 ..^ M S D n x X A C j = x X j / n B C S D S D n x X A C j = dx X j / n B C dS x
123 38 adantr φ j 0 ..^ M S
124 46 adantr φ j 0 ..^ M x X A C 𝑝𝑚 S
125 simpr φ j 0 M j 0 M
126 125 116 syl φ j 0 M j 0
127 115 126 sylan2 φ j 0 ..^ M j 0
128 123 124 127 119 syl3anc φ j 0 ..^ M S D n x X A C j + 1 = S D S D n x X A C j
129 128 adantr φ j 0 ..^ M S D n x X A C j = x X j / n B C S D n x X A C j + 1 = S D S D n x X A C j
130 1 adantr φ j 0 ..^ M S
131 simplr φ j 0 M x X j 0 M
132 49 ad2antrr φ j 0 M x X φ
133 simpr φ j 0 M x X x X
134 132 133 131 3jca φ j 0 M x X φ x X j 0 M
135 nfcv _ n j
136 nfv n φ x X j 0 M
137 135 nfcsb1 _ n j / n B
138 137 79 nfel n j / n B
139 136 138 nfim n φ x X j 0 M j / n B
140 eleq1 n = j n 0 M j 0 M
141 140 3anbi3d n = j φ x X n 0 M φ x X j 0 M
142 csbeq1a n = j B = j / n B
143 142 eleq1d n = j B j / n B
144 141 143 imbi12d n = j φ x X n 0 M B φ x X j 0 M j / n B
145 135 139 144 4 vtoclgf j 0 M φ x X j 0 M j / n B
146 131 134 145 sylc φ j 0 M x X j / n B
147 115 146 sylanl2 φ j 0 ..^ M x X j / n B
148 fzofzp1 j 0 ..^ M j + 1 0 M
149 148 ad2antlr φ j 0 ..^ M x X j + 1 0 M
150 115 132 sylanl2 φ j 0 ..^ M x X φ
151 simpr φ j 0 ..^ M x X x X
152 150 151 149 3jca φ j 0 ..^ M x X φ x X j + 1 0 M
153 nfcv _ n j + 1
154 nfv n φ x X j + 1 0 M
155 153 nfcsb1 _ n j + 1 / n B
156 155 79 nfel n j + 1 / n B
157 154 156 nfim n φ x X j + 1 0 M j + 1 / n B
158 eleq1 n = j + 1 n 0 M j + 1 0 M
159 158 3anbi3d n = j + 1 φ x X n 0 M φ x X j + 1 0 M
160 csbeq1a n = j + 1 B = j + 1 / n B
161 160 eleq1d n = j + 1 B j + 1 / n B
162 159 161 imbi12d n = j + 1 φ x X n 0 M B φ x X j + 1 0 M j + 1 / n B
163 153 157 162 4 vtoclgf j + 1 0 M φ x X j + 1 0 M j + 1 / n B
164 149 152 163 sylc φ j 0 ..^ M x X j + 1 / n B
165 simpl φ j 0 ..^ M φ
166 115 adantl φ j 0 ..^ M j 0 M
167 nfv n φ j 0 M
168 nfcv _ n S D n x X A j
169 56 137 nfmpt _ n x X j / n B
170 168 169 nfeq n S D n x X A j = x X j / n B
171 167 170 nfim n φ j 0 M S D n x X A j = x X j / n B
172 140 anbi2d n = j φ n 0 M φ j 0 M
173 fveq2 n = j S D n x X A n = S D n x X A j
174 142 mpteq2dv n = j x X B = x X j / n B
175 173 174 eqeq12d n = j S D n x X A n = x X B S D n x X A j = x X j / n B
176 172 175 imbi12d n = j φ n 0 M S D n x X A n = x X B φ j 0 M S D n x X A j = x X j / n B
177 171 176 5 chvarfv φ j 0 M S D n x X A j = x X j / n B
178 165 166 177 syl2anc φ j 0 ..^ M S D n x X A j = x X j / n B
179 178 eqcomd φ j 0 ..^ M x X j / n B = S D n x X A j
180 179 oveq2d φ j 0 ..^ M dx X j / n B dS x = S D S D n x X A j
181 165 94 syl φ j 0 ..^ M x X A 𝑝𝑚 S
182 dvnp1 S x X A 𝑝𝑚 S j 0 S D n x X A j + 1 = S D S D n x X A j
183 123 181 127 182 syl3anc φ j 0 ..^ M S D n x X A j + 1 = S D S D n x X A j
184 183 eqcomd φ j 0 ..^ M S D S D n x X A j = S D n x X A j + 1
185 148 adantl φ j 0 ..^ M j + 1 0 M
186 165 185 jca φ j 0 ..^ M φ j + 1 0 M
187 nfv n φ j + 1 0 M
188 nfcv _ n S D n x X A j + 1
189 56 155 nfmpt _ n x X j + 1 / n B
190 188 189 nfeq n S D n x X A j + 1 = x X j + 1 / n B
191 187 190 nfim n φ j + 1 0 M S D n x X A j + 1 = x X j + 1 / n B
192 158 anbi2d n = j + 1 φ n 0 M φ j + 1 0 M
193 fveq2 n = j + 1 S D n x X A n = S D n x X A j + 1
194 160 mpteq2dv n = j + 1 x X B = x X j + 1 / n B
195 193 194 eqeq12d n = j + 1 S D n x X A n = x X B S D n x X A j + 1 = x X j + 1 / n B
196 192 195 imbi12d n = j + 1 φ n 0 M S D n x X A n = x X B φ j + 1 0 M S D n x X A j + 1 = x X j + 1 / n B
197 153 191 196 5 vtoclgf j + 1 0 M φ j + 1 0 M S D n x X A j + 1 = x X j + 1 / n B
198 185 186 197 sylc φ j 0 ..^ M S D n x X A j + 1 = x X j + 1 / n B
199 180 184 198 3eqtrd φ j 0 ..^ M dx X j / n B dS x = x X j + 1 / n B
200 6 adantr φ j 0 ..^ M C
201 7 adantr φ j 0 ..^ M C 0
202 130 147 164 199 200 201 dvmptdivc φ j 0 ..^ M dx X j / n B C dS x = x X j + 1 / n B C
203 202 adantr φ j 0 ..^ M S D n x X A C j = x X j / n B C dx X j / n B C dS x = x X j + 1 / n B C
204 129 122 203 3eqtrd φ j 0 ..^ M S D n x X A C j = x X j / n B C S D n x X A C j + 1 = x X j + 1 / n B C
205 204 eqcomd φ j 0 ..^ M S D n x X A C j = x X j / n B C x X j + 1 / n B C = S D n x X A C j + 1
206 205 120 122 3eqtrrd φ j 0 ..^ M S D n x X A C j = x X j / n B C dx X j / n B C dS x = x X j + 1 / n B C
207 120 122 206 3eqtrd φ j 0 ..^ M S D n x X A C j = x X j / n B C S D n x X A C j + 1 = x X j + 1 / n B C
208 107 108 112 207 syl21anc j 0 ..^ M φ S D n x X A C j = x X j / n B C φ S D n x X A C j + 1 = x X j + 1 / n B C
209 208 3exp j 0 ..^ M φ S D n x X A C j = x X j / n B C φ S D n x X A C j + 1 = x X j + 1 / n B C
210 16 22 28 36 106 209 fzind2 n 0 M φ S D n x X A C n = x X B C
211 9 10 210 sylc φ n 0 M S D n x X A C n = x X B C