Metamath Proof Explorer


Theorem dvnmul

Description: Function-builder for the N -th derivative, product rule. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnmul.s φ S
dvnmul.x φ X TopOpen fld 𝑡 S
dvnmul.a φ x X A
dvnmul.cc φ x X B
dvnmul.n φ N 0
dvnmulf F = x X A
dvnmul.f G = x X B
dvnmul.dvnf φ k 0 N S D n F k : X
dvnmul.dvng φ k 0 N S D n G k : X
dvnmul.c C = k 0 N S D n F k
dvnmul.d D = k 0 N S D n G k
Assertion dvnmul φ S D n x X A B N = x X k = 0 N ( N k) C k x D N k x

Proof

Step Hyp Ref Expression
1 dvnmul.s φ S
2 dvnmul.x φ X TopOpen fld 𝑡 S
3 dvnmul.a φ x X A
4 dvnmul.cc φ x X B
5 dvnmul.n φ N 0
6 dvnmulf F = x X A
7 dvnmul.f G = x X B
8 dvnmul.dvnf φ k 0 N S D n F k : X
9 dvnmul.dvng φ k 0 N S D n G k : X
10 dvnmul.c C = k 0 N S D n F k
11 dvnmul.d D = k 0 N S D n G k
12 id φ φ
13 nn0uz 0 = 0
14 5 13 eleqtrdi φ N 0
15 eluzfz2 N 0 N 0 N
16 14 15 syl φ N 0 N
17 eleq1 n = N n 0 N N 0 N
18 fveq2 n = N S D n x X A B n = S D n x X A B N
19 oveq2 n = N 0 n = 0 N
20 19 sumeq1d n = N k = 0 n ( n k) C k x D n k x = k = 0 N ( n k) C k x D n k x
21 oveq1 n = N ( n k) = ( N k)
22 fvoveq1 n = N D n k = D N k
23 22 fveq1d n = N D n k x = D N k x
24 23 oveq2d n = N C k x D n k x = C k x D N k x
25 21 24 oveq12d n = N ( n k) C k x D n k x = ( N k) C k x D N k x
26 25 sumeq2sdv n = N k = 0 N ( n k) C k x D n k x = k = 0 N ( N k) C k x D N k x
27 20 26 eqtrd n = N k = 0 n ( n k) C k x D n k x = k = 0 N ( N k) C k x D N k x
28 27 mpteq2dv n = N x X k = 0 n ( n k) C k x D n k x = x X k = 0 N ( N k) C k x D N k x
29 18 28 eqeq12d n = N S D n x X A B n = x X k = 0 n ( n k) C k x D n k x S D n x X A B N = x X k = 0 N ( N k) C k x D N k x
30 29 imbi2d n = N φ S D n x X A B n = x X k = 0 n ( n k) C k x D n k x φ S D n x X A B N = x X k = 0 N ( N k) C k x D N k x
31 17 30 imbi12d n = N n 0 N φ S D n x X A B n = x X k = 0 n ( n k) C k x D n k x N 0 N φ S D n x X A B N = x X k = 0 N ( N k) C k x D N k x
32 fveq2 m = 0 S D n x X A B m = S D n x X A B 0
33 simpl m = 0 x X m = 0
34 33 oveq2d m = 0 x X 0 m = 0 0
35 simpll m = 0 x X k 0 0 m = 0
36 35 oveq1d m = 0 x X k 0 0 ( m k) = ( 0 k)
37 35 fvoveq1d m = 0 x X k 0 0 D m k = D 0 k
38 37 fveq1d m = 0 x X k 0 0 D m k x = D 0 k x
39 38 oveq2d m = 0 x X k 0 0 C k x D m k x = C k x D 0 k x
40 36 39 oveq12d m = 0 x X k 0 0 ( m k) C k x D m k x = ( 0 k) C k x D 0 k x
41 34 40 sumeq12rdv m = 0 x X k = 0 m ( m k) C k x D m k x = k = 0 0 ( 0 k) C k x D 0 k x
42 41 mpteq2dva m = 0 x X k = 0 m ( m k) C k x D m k x = x X k = 0 0 ( 0 k) C k x D 0 k x
43 32 42 eqeq12d m = 0 S D n x X A B m = x X k = 0 m ( m k) C k x D m k x S D n x X A B 0 = x X k = 0 0 ( 0 k) C k x D 0 k x
44 43 imbi2d m = 0 φ S D n x X A B m = x X k = 0 m ( m k) C k x D m k x φ S D n x X A B 0 = x X k = 0 0 ( 0 k) C k x D 0 k x
45 fveq2 m = i S D n x X A B m = S D n x X A B i
46 simpl m = i x X m = i
47 46 oveq2d m = i x X 0 m = 0 i
48 simpll m = i x X k 0 i m = i
49 48 oveq1d m = i x X k 0 i ( m k) = ( i k)
50 48 fvoveq1d m = i x X k 0 i D m k = D i k
51 50 fveq1d m = i x X k 0 i D m k x = D i k x
52 51 oveq2d m = i x X k 0 i C k x D m k x = C k x D i k x
53 49 52 oveq12d m = i x X k 0 i ( m k) C k x D m k x = ( i k) C k x D i k x
54 47 53 sumeq12rdv m = i x X k = 0 m ( m k) C k x D m k x = k = 0 i ( i k) C k x D i k x
55 54 mpteq2dva m = i x X k = 0 m ( m k) C k x D m k x = x X k = 0 i ( i k) C k x D i k x
56 45 55 eqeq12d m = i S D n x X A B m = x X k = 0 m ( m k) C k x D m k x S D n x X A B i = x X k = 0 i ( i k) C k x D i k x
57 56 imbi2d m = i φ S D n x X A B m = x X k = 0 m ( m k) C k x D m k x φ S D n x X A B i = x X k = 0 i ( i k) C k x D i k x
58 fveq2 m = i + 1 S D n x X A B m = S D n x X A B i + 1
59 simpl m = i + 1 x X m = i + 1
60 59 oveq2d m = i + 1 x X 0 m = 0 i + 1
61 simpll m = i + 1 x X k 0 i + 1 m = i + 1
62 61 oveq1d m = i + 1 x X k 0 i + 1 ( m k) = ( i + 1 k)
63 61 fvoveq1d m = i + 1 x X k 0 i + 1 D m k = D i + 1 - k
64 63 fveq1d m = i + 1 x X k 0 i + 1 D m k x = D i + 1 - k x
65 64 oveq2d m = i + 1 x X k 0 i + 1 C k x D m k x = C k x D i + 1 - k x
66 62 65 oveq12d m = i + 1 x X k 0 i + 1 ( m k) C k x D m k x = ( i + 1 k) C k x D i + 1 - k x
67 60 66 sumeq12rdv m = i + 1 x X k = 0 m ( m k) C k x D m k x = k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
68 67 mpteq2dva m = i + 1 x X k = 0 m ( m k) C k x D m k x = x X k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
69 58 68 eqeq12d m = i + 1 S D n x X A B m = x X k = 0 m ( m k) C k x D m k x S D n x X A B i + 1 = x X k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
70 69 imbi2d m = i + 1 φ S D n x X A B m = x X k = 0 m ( m k) C k x D m k x φ S D n x X A B i + 1 = x X k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
71 fveq2 m = n S D n x X A B m = S D n x X A B n
72 simpl m = n x X m = n
73 72 oveq2d m = n x X 0 m = 0 n
74 simpll m = n x X k 0 n m = n
75 74 oveq1d m = n x X k 0 n ( m k) = ( n k)
76 74 fvoveq1d m = n x X k 0 n D m k = D n k
77 76 fveq1d m = n x X k 0 n D m k x = D n k x
78 77 oveq2d m = n x X k 0 n C k x D m k x = C k x D n k x
79 75 78 oveq12d m = n x X k 0 n ( m k) C k x D m k x = ( n k) C k x D n k x
80 73 79 sumeq12rdv m = n x X k = 0 m ( m k) C k x D m k x = k = 0 n ( n k) C k x D n k x
81 80 mpteq2dva m = n x X k = 0 m ( m k) C k x D m k x = x X k = 0 n ( n k) C k x D n k x
82 71 81 eqeq12d m = n S D n x X A B m = x X k = 0 m ( m k) C k x D m k x S D n x X A B n = x X k = 0 n ( n k) C k x D n k x
83 82 imbi2d m = n φ S D n x X A B m = x X k = 0 m ( m k) C k x D m k x φ S D n x X A B n = x X k = 0 n ( n k) C k x D n k x
84 recnprss S S
85 1 84 syl φ S
86 3 4 mulcld φ x X A B
87 restsspw TopOpen fld 𝑡 S 𝒫 S
88 87 2 sselid φ X 𝒫 S
89 elpwi X 𝒫 S X S
90 88 89 syl φ X S
91 cnex V
92 91 a1i φ V
93 86 90 92 1 mptelpm φ x X A B 𝑝𝑚 S
94 dvn0 S x X A B 𝑝𝑚 S S D n x X A B 0 = x X A B
95 85 93 94 syl2anc φ S D n x X A B 0 = x X A B
96 0z 0
97 fzsn 0 0 0 = 0
98 96 97 ax-mp 0 0 = 0
99 98 sumeq1i k = 0 0 ( 0 k) C k x D 0 k x = k 0 ( 0 k) C k x D 0 k x
100 99 a1i φ x X k = 0 0 ( 0 k) C k x D 0 k x = k 0 ( 0 k) C k x D 0 k x
101 nfcvd φ x X _ k A B
102 nfv k φ x X
103 oveq2 k = 0 ( 0 k) = ( 0 0 )
104 0nn0 0 0
105 bcn0 0 0 ( 0 0 ) = 1
106 104 105 ax-mp ( 0 0 ) = 1
107 106 a1i k = 0 ( 0 0 ) = 1
108 103 107 eqtrd k = 0 ( 0 k) = 1
109 108 adantl φ x X k = 0 ( 0 k) = 1
110 fveq2 k = 0 C k = C 0
111 110 adantl φ k = 0 C k = C 0
112 fveq2 k = n S D n F k = S D n F n
113 112 cbvmptv k 0 N S D n F k = n 0 N S D n F n
114 10 113 eqtri C = n 0 N S D n F n
115 fveq2 n = 0 S D n F n = S D n F 0
116 eluzfz1 N 0 0 0 N
117 14 116 syl φ 0 0 N
118 fvexd φ S D n F 0 V
119 114 115 117 118 fvmptd3 φ C 0 = S D n F 0
120 119 adantr φ k = 0 C 0 = S D n F 0
121 111 120 eqtrd φ k = 0 C k = S D n F 0
122 3 90 92 1 mptelpm φ x X A 𝑝𝑚 S
123 6 122 eqeltrid φ F 𝑝𝑚 S
124 dvn0 S F 𝑝𝑚 S S D n F 0 = F
125 85 123 124 syl2anc φ S D n F 0 = F
126 125 adantr φ k = 0 S D n F 0 = F
127 121 126 eqtrd φ k = 0 C k = F
128 127 fveq1d φ k = 0 C k x = F x
129 128 adantlr φ x X k = 0 C k x = F x
130 simpr φ x X x X
131 6 fvmpt2 x X A F x = A
132 130 3 131 syl2anc φ x X F x = A
133 132 adantr φ x X k = 0 F x = A
134 129 133 eqtrd φ x X k = 0 C k x = A
135 oveq2 k = 0 0 k = 0 0
136 0m0e0 0 0 = 0
137 136 a1i k = 0 0 0 = 0
138 135 137 eqtrd k = 0 0 k = 0
139 138 fveq2d k = 0 D 0 k = D 0
140 139 fveq1d k = 0 D 0 k x = D 0 x
141 140 adantl φ k = 0 D 0 k x = D 0 x
142 141 adantlr φ x X k = 0 D 0 k x = D 0 x
143 fveq2 k = n S D n G k = S D n G n
144 143 cbvmptv k 0 N S D n G k = n 0 N S D n G n
145 11 144 eqtri D = n 0 N S D n G n
146 145 fveq1i D 0 = n 0 N S D n G n 0
147 146 a1i φ D 0 = n 0 N S D n G n 0
148 eqidd φ n 0 N S D n G n = n 0 N S D n G n
149 fveq2 n = 0 S D n G n = S D n G 0
150 149 adantl φ n = 0 S D n G n = S D n G 0
151 4 90 92 1 mptelpm φ x X B 𝑝𝑚 S
152 7 151 eqeltrid φ G 𝑝𝑚 S
153 dvn0 S G 𝑝𝑚 S S D n G 0 = G
154 85 152 153 syl2anc φ S D n G 0 = G
155 154 adantr φ n = 0 S D n G 0 = G
156 150 155 eqtrd φ n = 0 S D n G n = G
157 7 a1i φ G = x X B
158 mptexg X 𝒫 S x X B V
159 88 158 syl φ x X B V
160 157 159 eqeltrd φ G V
161 148 156 117 160 fvmptd φ n 0 N S D n G n 0 = G
162 147 161 eqtrd φ D 0 = G
163 162 fveq1d φ D 0 x = G x
164 163 ad2antrr φ x X k = 0 D 0 x = G x
165 157 4 fvmpt2d φ x X G x = B
166 165 adantr φ x X k = 0 G x = B
167 142 164 166 3eqtrd φ x X k = 0 D 0 k x = B
168 134 167 oveq12d φ x X k = 0 C k x D 0 k x = A B
169 109 168 oveq12d φ x X k = 0 ( 0 k) C k x D 0 k x = 1 A B
170 86 mulid2d φ x X 1 A B = A B
171 170 adantr φ x X k = 0 1 A B = A B
172 169 171 eqtrd φ x X k = 0 ( 0 k) C k x D 0 k x = A B
173 0re 0
174 173 a1i φ x X 0
175 101 102 172 174 86 sumsnd φ x X k 0 ( 0 k) C k x D 0 k x = A B
176 100 175 eqtr2d φ x X A B = k = 0 0 ( 0 k) C k x D 0 k x
177 176 mpteq2dva φ x X A B = x X k = 0 0 ( 0 k) C k x D 0 k x
178 95 177 eqtrd φ S D n x X A B 0 = x X k = 0 0 ( 0 k) C k x D 0 k x
179 178 a1i N 0 φ S D n x X A B 0 = x X k = 0 0 ( 0 k) C k x D 0 k x
180 simp3 i 0 ..^ N φ S D n x X A B i = x X k = 0 i ( i k) C k x D i k x φ φ
181 simp1 i 0 ..^ N φ S D n x X A B i = x X k = 0 i ( i k) C k x D i k x φ i 0 ..^ N
182 simp2 i 0 ..^ N φ S D n x X A B i = x X k = 0 i ( i k) C k x D i k x φ φ S D n x X A B i = x X k = 0 i ( i k) C k x D i k x
183 pm3.35 φ φ S D n x X A B i = x X k = 0 i ( i k) C k x D i k x S D n x X A B i = x X k = 0 i ( i k) C k x D i k x
184 180 182 183 syl2anc i 0 ..^ N φ S D n x X A B i = x X k = 0 i ( i k) C k x D i k x φ S D n x X A B i = x X k = 0 i ( i k) C k x D i k x
185 85 adantr φ i 0 ..^ N S
186 93 adantr φ i 0 ..^ N x X A B 𝑝𝑚 S
187 elfzonn0 i 0 ..^ N i 0
188 187 adantl φ i 0 ..^ N i 0
189 dvnp1 S x X A B 𝑝𝑚 S i 0 S D n x X A B i + 1 = S D S D n x X A B i
190 185 186 188 189 syl3anc φ i 0 ..^ N S D n x X A B i + 1 = S D S D n x X A B i
191 190 adantr φ i 0 ..^ N S D n x X A B i = x X k = 0 i ( i k) C k x D i k x S D n x X A B i + 1 = S D S D n x X A B i
192 simpr φ i 0 ..^ N S D n x X A B i = x X k = 0 i ( i k) C k x D i k x S D n x X A B i = x X k = 0 i ( i k) C k x D i k x
193 192 oveq2d φ i 0 ..^ N S D n x X A B i = x X k = 0 i ( i k) C k x D i k x S D S D n x X A B i = dx X k = 0 i ( i k) C k x D i k x dS x
194 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
195 eqid TopOpen fld = TopOpen fld
196 1 adantr φ i 0 ..^ N S
197 2 adantr φ i 0 ..^ N X TopOpen fld 𝑡 S
198 fzfid φ i 0 ..^ N 0 i Fin
199 187 adantr i 0 ..^ N k 0 i i 0
200 elfzelz k 0 i k
201 200 adantl i 0 ..^ N k 0 i k
202 199 201 bccld i 0 ..^ N k 0 i ( i k) 0
203 202 nn0cnd i 0 ..^ N k 0 i ( i k)
204 203 adantll φ i 0 ..^ N k 0 i ( i k)
205 204 3adant3 φ i 0 ..^ N k 0 i x X ( i k)
206 simpll φ i 0 ..^ N k 0 i φ
207 0zd i 0 ..^ N k 0 i 0
208 elfzoel2 i 0 ..^ N N
209 208 adantr i 0 ..^ N k 0 i N
210 elfzle1 k 0 i 0 k
211 210 adantl i 0 ..^ N k 0 i 0 k
212 201 zred i 0 ..^ N k 0 i k
213 208 zred i 0 ..^ N N
214 213 adantr i 0 ..^ N k 0 i N
215 187 nn0red i 0 ..^ N i
216 215 adantr i 0 ..^ N k 0 i i
217 elfzle2 k 0 i k i
218 217 adantl i 0 ..^ N k 0 i k i
219 elfzolt2 i 0 ..^ N i < N
220 219 adantr i 0 ..^ N k 0 i i < N
221 212 216 214 218 220 lelttrd i 0 ..^ N k 0 i k < N
222 212 214 221 ltled i 0 ..^ N k 0 i k N
223 207 209 201 211 222 elfzd i 0 ..^ N k 0 i k 0 N
224 223 adantll φ i 0 ..^ N k 0 i k 0 N
225 10 a1i φ C = k 0 N S D n F k
226 fvexd φ k 0 N S D n F k V
227 225 226 fvmpt2d φ k 0 N C k = S D n F k
228 227 feq1d φ k 0 N C k : X S D n F k : X
229 8 228 mpbird φ k 0 N C k : X
230 206 224 229 syl2anc φ i 0 ..^ N k 0 i C k : X
231 230 3adant3 φ i 0 ..^ N k 0 i x X C k : X
232 simp3 φ i 0 ..^ N k 0 i x X x X
233 231 232 ffvelrnd φ i 0 ..^ N k 0 i x X C k x
234 187 nn0zd i 0 ..^ N i
235 234 adantr i 0 ..^ N k 0 i i
236 235 201 zsubcld i 0 ..^ N k 0 i i k
237 elfzel2 k 0 i i
238 237 zred k 0 i i
239 200 zred k 0 i k
240 238 239 subge0d k 0 i 0 i k k i
241 217 240 mpbird k 0 i 0 i k
242 241 adantl i 0 ..^ N k 0 i 0 i k
243 216 212 resubcld i 0 ..^ N k 0 i i k
244 214 212 resubcld i 0 ..^ N k 0 i N k
245 173 a1i i 0 ..^ N k 0 i 0
246 214 245 jca i 0 ..^ N k 0 i N 0
247 resubcl N 0 N 0
248 246 247 syl i 0 ..^ N k 0 i N 0
249 216 214 212 220 ltsub1dd i 0 ..^ N k 0 i i k < N k
250 245 212 214 211 lesub2dd i 0 ..^ N k 0 i N k N 0
251 243 244 248 249 250 ltletrd i 0 ..^ N k 0 i i k < N 0
252 213 recnd i 0 ..^ N N
253 252 subid1d i 0 ..^ N N 0 = N
254 253 adantr i 0 ..^ N k 0 i N 0 = N
255 251 254 breqtrd i 0 ..^ N k 0 i i k < N
256 243 214 255 ltled i 0 ..^ N k 0 i i k N
257 207 209 236 242 256 elfzd i 0 ..^ N k 0 i i k 0 N
258 257 adantll φ i 0 ..^ N k 0 i i k 0 N
259 ovex i k V
260 eleq1 j = i k j 0 N i k 0 N
261 260 anbi2d j = i k φ j 0 N φ i k 0 N
262 fveq2 j = i k S D n G j = S D n G i k
263 262 feq1d j = i k S D n G j : X S D n G i k : X
264 261 263 imbi12d j = i k φ j 0 N S D n G j : X φ i k 0 N S D n G i k : X
265 nfv k φ j 0 N S D n G j : X
266 eleq1 k = j k 0 N j 0 N
267 266 anbi2d k = j φ k 0 N φ j 0 N
268 fveq2 k = j S D n G k = S D n G j
269 268 feq1d k = j S D n G k : X S D n G j : X
270 267 269 imbi12d k = j φ k 0 N S D n G k : X φ j 0 N S D n G j : X
271 265 270 9 chvarfv φ j 0 N S D n G j : X
272 259 264 271 vtocl φ i k 0 N S D n G i k : X
273 206 258 272 syl2anc φ i 0 ..^ N k 0 i S D n G i k : X
274 fveq2 n = i k S D n G n = S D n G i k
275 fvexd i 0 ..^ N k 0 i S D n G i k V
276 145 274 257 275 fvmptd3 i 0 ..^ N k 0 i D i k = S D n G i k
277 276 adantll φ i 0 ..^ N k 0 i D i k = S D n G i k
278 277 feq1d φ i 0 ..^ N k 0 i D i k : X S D n G i k : X
279 273 278 mpbird φ i 0 ..^ N k 0 i D i k : X
280 279 3adant3 φ i 0 ..^ N k 0 i x X D i k : X
281 280 232 ffvelrnd φ i 0 ..^ N k 0 i x X D i k x
282 233 281 mulcld φ i 0 ..^ N k 0 i x X C k x D i k x
283 205 282 mulcld φ i 0 ..^ N k 0 i x X ( i k) C k x D i k x
284 205 3expa φ i 0 ..^ N k 0 i x X ( i k)
285 235 peano2zd i 0 ..^ N k 0 i i + 1
286 285 201 zsubcld i 0 ..^ N k 0 i i + 1 - k
287 peano2re i i + 1
288 238 287 syl k 0 i i + 1
289 peano2re k k + 1
290 239 289 syl k 0 i k + 1
291 239 ltp1d k 0 i k < k + 1
292 1red k 0 i 1
293 239 238 292 217 leadd1dd k 0 i k + 1 i + 1
294 239 290 288 291 293 ltletrd k 0 i k < i + 1
295 239 288 294 ltled k 0 i k i + 1
296 295 adantl i 0 ..^ N k 0 i k i + 1
297 216 287 syl i 0 ..^ N k 0 i i + 1
298 297 212 subge0d i 0 ..^ N k 0 i 0 i + 1 - k k i + 1
299 296 298 mpbird i 0 ..^ N k 0 i 0 i + 1 - k
300 297 212 resubcld i 0 ..^ N k 0 i i + 1 - k
301 elfzop1le2 i 0 ..^ N i + 1 N
302 301 adantr i 0 ..^ N k 0 i i + 1 N
303 297 214 212 302 lesub1dd i 0 ..^ N k 0 i i + 1 - k N k
304 250 254 breqtrd i 0 ..^ N k 0 i N k N
305 300 244 214 303 304 letrd i 0 ..^ N k 0 i i + 1 - k N
306 207 209 286 299 305 elfzd i 0 ..^ N k 0 i i + 1 - k 0 N
307 306 adantll φ i 0 ..^ N k 0 i i + 1 - k 0 N
308 ovex i + 1 - k V
309 eleq1 j = i + 1 - k j 0 N i + 1 - k 0 N
310 309 anbi2d j = i + 1 - k φ j 0 N φ i + 1 - k 0 N
311 fveq2 j = i + 1 - k S D n G j = S D n G i + 1 - k
312 311 feq1d j = i + 1 - k S D n G j : X S D n G i + 1 - k : X
313 310 312 imbi12d j = i + 1 - k φ j 0 N S D n G j : X φ i + 1 - k 0 N S D n G i + 1 - k : X
314 308 313 271 vtocl φ i + 1 - k 0 N S D n G i + 1 - k : X
315 206 307 314 syl2anc φ i 0 ..^ N k 0 i S D n G i + 1 - k : X
316 145 a1i φ i 0 ..^ N k 0 i D = n 0 N S D n G n
317 simpr φ i 0 ..^ N k 0 i n = i + 1 - k n = i + 1 - k
318 317 fveq2d φ i 0 ..^ N k 0 i n = i + 1 - k S D n G n = S D n G i + 1 - k
319 fvexd φ i 0 ..^ N k 0 i S D n G i + 1 - k V
320 316 318 307 319 fvmptd φ i 0 ..^ N k 0 i D i + 1 - k = S D n G i + 1 - k
321 320 feq1d φ i 0 ..^ N k 0 i D i + 1 - k : X S D n G i + 1 - k : X
322 315 321 mpbird φ i 0 ..^ N k 0 i D i + 1 - k : X
323 322 ffvelrnda φ i 0 ..^ N k 0 i x X D i + 1 - k x
324 233 3expa φ i 0 ..^ N k 0 i x X C k x
325 323 324 mulcomd φ i 0 ..^ N k 0 i x X D i + 1 - k x C k x = C k x D i + 1 - k x
326 325 oveq2d φ i 0 ..^ N k 0 i x X C k + 1 x D i k x + D i + 1 - k x C k x = C k + 1 x D i k x + C k x D i + 1 - k x
327 201 peano2zd i 0 ..^ N k 0 i k + 1
328 173 a1i k 0 i 0
329 328 239 290 210 291 lelttrd k 0 i 0 < k + 1
330 328 290 329 ltled k 0 i 0 k + 1
331 330 adantl i 0 ..^ N k 0 i 0 k + 1
332 212 289 syl i 0 ..^ N k 0 i k + 1
333 293 adantl i 0 ..^ N k 0 i k + 1 i + 1
334 332 297 214 333 302 letrd i 0 ..^ N k 0 i k + 1 N
335 207 209 327 331 334 elfzd i 0 ..^ N k 0 i k + 1 0 N
336 335 adantll φ i 0 ..^ N k 0 i k + 1 0 N
337 ovex k + 1 V
338 eleq1 j = k + 1 j 0 N k + 1 0 N
339 338 anbi2d j = k + 1 φ j 0 N φ k + 1 0 N
340 fveq2 j = k + 1 C j = C k + 1
341 340 feq1d j = k + 1 C j : X C k + 1 : X
342 339 341 imbi12d j = k + 1 φ j 0 N C j : X φ k + 1 0 N C k + 1 : X
343 nfv k φ j 0 N
344 nfmpt1 _ k k 0 N S D n F k
345 10 344 nfcxfr _ k C
346 nfcv _ k j
347 345 346 nffv _ k C j
348 nfcv _ k X
349 nfcv _ k
350 347 348 349 nff k C j : X
351 343 350 nfim k φ j 0 N C j : X
352 fveq2 k = j C k = C j
353 352 feq1d k = j C k : X C j : X
354 267 353 imbi12d k = j φ k 0 N C k : X φ j 0 N C j : X
355 351 354 229 chvarfv φ j 0 N C j : X
356 337 342 355 vtocl φ k + 1 0 N C k + 1 : X
357 206 336 356 syl2anc φ i 0 ..^ N k 0 i C k + 1 : X
358 357 ffvelrnda φ i 0 ..^ N k 0 i x X C k + 1 x
359 281 3expa φ i 0 ..^ N k 0 i x X D i k x
360 358 359 mulcld φ i 0 ..^ N k 0 i x X C k + 1 x D i k x
361 323 324 mulcld φ i 0 ..^ N k 0 i x X D i + 1 - k x C k x
362 360 361 addcld φ i 0 ..^ N k 0 i x X C k + 1 x D i k x + D i + 1 - k x C k x
363 326 362 eqeltrrd φ i 0 ..^ N k 0 i x X C k + 1 x D i k x + C k x D i + 1 - k x
364 284 363 mulcld φ i 0 ..^ N k 0 i x X ( i k) C k + 1 x D i k x + C k x D i + 1 - k x
365 364 3impa φ i 0 ..^ N k 0 i x X ( i k) C k + 1 x D i k x + C k x D i + 1 - k x
366 206 1 syl φ i 0 ..^ N k 0 i S
367 173 a1i φ i 0 ..^ N k 0 i x X 0
368 206 2 syl φ i 0 ..^ N k 0 i X TopOpen fld 𝑡 S
369 366 368 204 dvmptconst φ i 0 ..^ N k 0 i dx X ( i k) dS x = x X 0
370 282 3expa φ i 0 ..^ N k 0 i x X C k x D i k x
371 206 224 227 syl2anc φ i 0 ..^ N k 0 i C k = S D n F k
372 371 eqcomd φ i 0 ..^ N k 0 i S D n F k = C k
373 230 feqmptd φ i 0 ..^ N k 0 i C k = x X C k x
374 372 373 eqtr2d φ i 0 ..^ N k 0 i x X C k x = S D n F k
375 374 oveq2d φ i 0 ..^ N k 0 i dx X C k x dS x = S D S D n F k
376 366 84 syl φ i 0 ..^ N k 0 i S
377 206 123 syl φ i 0 ..^ N k 0 i F 𝑝𝑚 S
378 elfznn0 k 0 i k 0
379 378 adantl φ i 0 ..^ N k 0 i k 0
380 dvnp1 S F 𝑝𝑚 S k 0 S D n F k + 1 = S D S D n F k
381 376 377 379 380 syl3anc φ i 0 ..^ N k 0 i S D n F k + 1 = S D S D n F k
382 381 eqcomd φ i 0 ..^ N k 0 i S D S D n F k = S D n F k + 1
383 fveq2 n = k + 1 S D n F n = S D n F k + 1
384 fvexd φ i 0 ..^ N k 0 i S D n F k + 1 V
385 114 383 336 384 fvmptd3 φ i 0 ..^ N k 0 i C k + 1 = S D n F k + 1
386 385 eqcomd φ i 0 ..^ N k 0 i S D n F k + 1 = C k + 1
387 357 feqmptd φ i 0 ..^ N k 0 i C k + 1 = x X C k + 1 x
388 386 387 eqtrd φ i 0 ..^ N k 0 i S D n F k + 1 = x X C k + 1 x
389 375 382 388 3eqtrd φ i 0 ..^ N k 0 i dx X C k x dS x = x X C k + 1 x
390 277 eqcomd φ i 0 ..^ N k 0 i S D n G i k = D i k
391 279 feqmptd φ i 0 ..^ N k 0 i D i k = x X D i k x
392 390 391 eqtr2d φ i 0 ..^ N k 0 i x X D i k x = S D n G i k
393 392 oveq2d φ i 0 ..^ N k 0 i dx X D i k x dS x = S D S D n G i k
394 206 152 syl φ i 0 ..^ N k 0 i G 𝑝𝑚 S
395 fznn0sub k 0 i i k 0
396 395 adantl φ i 0 ..^ N k 0 i i k 0
397 dvnp1 S G 𝑝𝑚 S i k 0 S D n G i - k + 1 = S D S D n G i k
398 376 394 396 397 syl3anc φ i 0 ..^ N k 0 i S D n G i - k + 1 = S D S D n G i k
399 398 eqcomd φ i 0 ..^ N k 0 i S D S D n G i k = S D n G i - k + 1
400 216 recnd i 0 ..^ N k 0 i i
401 1cnd i 0 ..^ N k 0 i 1
402 212 recnd i 0 ..^ N k 0 i k
403 400 401 402 addsubd i 0 ..^ N k 0 i i + 1 - k = i - k + 1
404 403 eqcomd i 0 ..^ N k 0 i i - k + 1 = i + 1 - k
405 404 fveq2d i 0 ..^ N k 0 i S D n G i - k + 1 = S D n G i + 1 - k
406 405 adantll φ i 0 ..^ N k 0 i S D n G i - k + 1 = S D n G i + 1 - k
407 320 eqcomd φ i 0 ..^ N k 0 i S D n G i + 1 - k = D i + 1 - k
408 322 feqmptd φ i 0 ..^ N k 0 i D i + 1 - k = x X D i + 1 - k x
409 406 407 408 3eqtrd φ i 0 ..^ N k 0 i S D n G i - k + 1 = x X D i + 1 - k x
410 393 399 409 3eqtrd φ i 0 ..^ N k 0 i dx X D i k x dS x = x X D i + 1 - k x
411 366 324 358 389 359 323 410 dvmptmul φ i 0 ..^ N k 0 i dx X C k x D i k x dS x = x X C k + 1 x D i k x + D i + 1 - k x C k x
412 366 284 367 369 370 362 411 dvmptmul φ i 0 ..^ N k 0 i dx X ( i k) C k x D i k x dS x = x X 0 C k x D i k x + C k + 1 x D i k x + D i + 1 - k x C k x ( i k)
413 370 mul02d φ i 0 ..^ N k 0 i x X 0 C k x D i k x = 0
414 326 oveq1d φ i 0 ..^ N k 0 i x X C k + 1 x D i k x + D i + 1 - k x C k x ( i k) = C k + 1 x D i k x + C k x D i + 1 - k x ( i k)
415 363 284 mulcomd φ i 0 ..^ N k 0 i x X C k + 1 x D i k x + C k x D i + 1 - k x ( i k) = ( i k) C k + 1 x D i k x + C k x D i + 1 - k x
416 414 415 eqtrd φ i 0 ..^ N k 0 i x X C k + 1 x D i k x + D i + 1 - k x C k x ( i k) = ( i k) C k + 1 x D i k x + C k x D i + 1 - k x
417 413 416 oveq12d φ i 0 ..^ N k 0 i x X 0 C k x D i k x + C k + 1 x D i k x + D i + 1 - k x C k x ( i k) = 0 + ( i k) C k + 1 x D i k x + C k x D i + 1 - k x
418 364 addid2d φ i 0 ..^ N k 0 i x X 0 + ( i k) C k + 1 x D i k x + C k x D i + 1 - k x = ( i k) C k + 1 x D i k x + C k x D i + 1 - k x
419 417 418 eqtrd φ i 0 ..^ N k 0 i x X 0 C k x D i k x + C k + 1 x D i k x + D i + 1 - k x C k x ( i k) = ( i k) C k + 1 x D i k x + C k x D i + 1 - k x
420 419 mpteq2dva φ i 0 ..^ N k 0 i x X 0 C k x D i k x + C k + 1 x D i k x + D i + 1 - k x C k x ( i k) = x X ( i k) C k + 1 x D i k x + C k x D i + 1 - k x
421 412 420 eqtrd φ i 0 ..^ N k 0 i dx X ( i k) C k x D i k x dS x = x X ( i k) C k + 1 x D i k x + C k x D i + 1 - k x
422 194 195 196 197 198 283 365 421 dvmptfsum φ i 0 ..^ N dx X k = 0 i ( i k) C k x D i k x dS x = x X k = 0 i ( i k) C k + 1 x D i k x + C k x D i + 1 - k x
423 204 adantlr φ i 0 ..^ N x X k 0 i ( i k)
424 360 an32s φ i 0 ..^ N x X k 0 i C k + 1 x D i k x
425 anass φ i 0 ..^ N k 0 i x X φ i 0 ..^ N k 0 i x X
426 ancom k 0 i x X x X k 0 i
427 426 anbi2i φ i 0 ..^ N k 0 i x X φ i 0 ..^ N x X k 0 i
428 anass φ i 0 ..^ N x X k 0 i φ i 0 ..^ N x X k 0 i
429 428 bicomi φ i 0 ..^ N x X k 0 i φ i 0 ..^ N x X k 0 i
430 427 429 bitri φ i 0 ..^ N k 0 i x X φ i 0 ..^ N x X k 0 i
431 425 430 bitri φ i 0 ..^ N k 0 i x X φ i 0 ..^ N x X k 0 i
432 431 imbi1i φ i 0 ..^ N k 0 i x X C k x φ i 0 ..^ N x X k 0 i C k x
433 324 432 mpbi φ i 0 ..^ N x X k 0 i C k x
434 431 imbi1i φ i 0 ..^ N k 0 i x X D i + 1 - k x φ i 0 ..^ N x X k 0 i D i + 1 - k x
435 323 434 mpbi φ i 0 ..^ N x X k 0 i D i + 1 - k x
436 433 435 mulcld φ i 0 ..^ N x X k 0 i C k x D i + 1 - k x
437 423 424 436 adddid φ i 0 ..^ N x X k 0 i ( i k) C k + 1 x D i k x + C k x D i + 1 - k x = ( i k) C k + 1 x D i k x + ( i k) C k x D i + 1 - k x
438 437 sumeq2dv φ i 0 ..^ N x X k = 0 i ( i k) C k + 1 x D i k x + C k x D i + 1 - k x = k = 0 i ( i k) C k + 1 x D i k x + ( i k) C k x D i + 1 - k x
439 198 adantr φ i 0 ..^ N x X 0 i Fin
440 423 424 mulcld φ i 0 ..^ N x X k 0 i ( i k) C k + 1 x D i k x
441 423 436 mulcld φ i 0 ..^ N x X k 0 i ( i k) C k x D i + 1 - k x
442 439 440 441 fsumadd φ i 0 ..^ N x X k = 0 i ( i k) C k + 1 x D i k x + ( i k) C k x D i + 1 - k x = k = 0 i ( i k) C k + 1 x D i k x + k = 0 i ( i k) C k x D i + 1 - k x
443 oveq2 k = h ( i k) = ( i h)
444 fvoveq1 k = h C k + 1 = C h + 1
445 444 fveq1d k = h C k + 1 x = C h + 1 x
446 oveq2 k = h i k = i h
447 446 fveq2d k = h D i k = D i h
448 447 fveq1d k = h D i k x = D i h x
449 445 448 oveq12d k = h C k + 1 x D i k x = C h + 1 x D i h x
450 443 449 oveq12d k = h ( i k) C k + 1 x D i k x = ( i h) C h + 1 x D i h x
451 nfcv _ h 0 i
452 nfcv _ k 0 i
453 nfcv _ h ( i k) C k + 1 x D i k x
454 nfcv _ k ( i h)
455 nfcv _ k ×
456 nfcv _ k h + 1
457 345 456 nffv _ k C h + 1
458 nfcv _ k x
459 457 458 nffv _ k C h + 1 x
460 nfmpt1 _ k k 0 N S D n G k
461 11 460 nfcxfr _ k D
462 nfcv _ k i h
463 461 462 nffv _ k D i h
464 463 458 nffv _ k D i h x
465 459 455 464 nfov _ k C h + 1 x D i h x
466 454 455 465 nfov _ k ( i h) C h + 1 x D i h x
467 450 451 452 453 466 cbvsum k = 0 i ( i k) C k + 1 x D i k x = h = 0 i ( i h) C h + 1 x D i h x
468 467 a1i φ i 0 ..^ N x X k = 0 i ( i k) C k + 1 x D i k x = h = 0 i ( i h) C h + 1 x D i h x
469 1zzd φ i 0 ..^ N x X 1
470 96 a1i φ i 0 ..^ N x X 0
471 234 ad2antlr φ i 0 ..^ N x X i
472 nfv k φ i 0 ..^ N x X
473 nfcv _ k h
474 473 452 nfel k h 0 i
475 472 474 nfan k φ i 0 ..^ N x X h 0 i
476 466 349 nfel k ( i h) C h + 1 x D i h x
477 475 476 nfim k φ i 0 ..^ N x X h 0 i ( i h) C h + 1 x D i h x
478 eleq1 k = h k 0 i h 0 i
479 478 anbi2d k = h φ i 0 ..^ N x X k 0 i φ i 0 ..^ N x X h 0 i
480 450 eleq1d k = h ( i k) C k + 1 x D i k x ( i h) C h + 1 x D i h x
481 479 480 imbi12d k = h φ i 0 ..^ N x X k 0 i ( i k) C k + 1 x D i k x φ i 0 ..^ N x X h 0 i ( i h) C h + 1 x D i h x
482 477 481 440 chvarfv φ i 0 ..^ N x X h 0 i ( i h) C h + 1 x D i h x
483 oveq2 h = j 1 ( i h) = ( i j 1 )
484 fvoveq1 h = j 1 C h + 1 = C j - 1 + 1
485 484 fveq1d h = j 1 C h + 1 x = C j - 1 + 1 x
486 oveq2 h = j 1 i h = i j 1
487 486 fveq2d h = j 1 D i h = D i j 1
488 487 fveq1d h = j 1 D i h x = D i j 1 x
489 485 488 oveq12d h = j 1 C h + 1 x D i h x = C j - 1 + 1 x D i j 1 x
490 483 489 oveq12d h = j 1 ( i h) C h + 1 x D i h x = ( i j 1 ) C j - 1 + 1 x D i j 1 x
491 469 470 471 482 490 fsumshft φ i 0 ..^ N x X h = 0 i ( i h) C h + 1 x D i h x = j = 0 + 1 i + 1 ( i j 1 ) C j - 1 + 1 x D i j 1 x
492 468 491 eqtrd φ i 0 ..^ N x X k = 0 i ( i k) C k + 1 x D i k x = j = 0 + 1 i + 1 ( i j 1 ) C j - 1 + 1 x D i j 1 x
493 0p1e1 0 + 1 = 1
494 493 oveq1i 0 + 1 i + 1 = 1 i + 1
495 494 sumeq1i j = 0 + 1 i + 1 ( i j 1 ) C j - 1 + 1 x D i j 1 x = j = 1 i + 1 ( i j 1 ) C j - 1 + 1 x D i j 1 x
496 495 a1i φ i 0 ..^ N x X j = 0 + 1 i + 1 ( i j 1 ) C j - 1 + 1 x D i j 1 x = j = 1 i + 1 ( i j 1 ) C j - 1 + 1 x D i j 1 x
497 elfzelz j 1 i + 1 j
498 497 zcnd j 1 i + 1 j
499 1cnd j 1 i + 1 1
500 498 499 npcand j 1 i + 1 j - 1 + 1 = j
501 500 fveq2d j 1 i + 1 C j - 1 + 1 = C j
502 501 fveq1d j 1 i + 1 C j - 1 + 1 x = C j x
503 502 adantl i 0 ..^ N j 1 i + 1 C j - 1 + 1 x = C j x
504 215 recnd i 0 ..^ N i
505 504 adantr i 0 ..^ N j 1 i + 1 i
506 498 adantl i 0 ..^ N j 1 i + 1 j
507 499 adantl i 0 ..^ N j 1 i + 1 1
508 505 506 507 subsub3d i 0 ..^ N j 1 i + 1 i j 1 = i + 1 - j
509 508 fveq2d i 0 ..^ N j 1 i + 1 D i j 1 = D i + 1 - j
510 509 fveq1d i 0 ..^ N j 1 i + 1 D i j 1 x = D i + 1 - j x
511 503 510 oveq12d i 0 ..^ N j 1 i + 1 C j - 1 + 1 x D i j 1 x = C j x D i + 1 - j x
512 511 oveq2d i 0 ..^ N j 1 i + 1 ( i j 1 ) C j - 1 + 1 x D i j 1 x = ( i j 1 ) C j x D i + 1 - j x
513 512 sumeq2dv i 0 ..^ N j = 1 i + 1 ( i j 1 ) C j - 1 + 1 x D i j 1 x = j = 1 i + 1 ( i j 1 ) C j x D i + 1 - j x
514 513 ad2antlr φ i 0 ..^ N x X j = 1 i + 1 ( i j 1 ) C j - 1 + 1 x D i j 1 x = j = 1 i + 1 ( i j 1 ) C j x D i + 1 - j x
515 nfv j φ i 0 ..^ N x X
516 nfcv _ j ( i i + 1 - 1 ) C i + 1 x D i + 1 - i + 1 x
517 fzfid φ i 0 ..^ N x X 1 i + 1 Fin
518 187 adantr i 0 ..^ N j 1 i + 1 i 0
519 497 adantl i 0 ..^ N j 1 i + 1 j
520 1zzd i 0 ..^ N j 1 i + 1 1
521 519 520 zsubcld i 0 ..^ N j 1 i + 1 j 1
522 518 521 bccld i 0 ..^ N j 1 i + 1 ( i j 1 ) 0
523 522 nn0cnd i 0 ..^ N j 1 i + 1 ( i j 1 )
524 523 adantll φ i 0 ..^ N j 1 i + 1 ( i j 1 )
525 524 adantlr φ i 0 ..^ N x X j 1 i + 1 ( i j 1 )
526 12 ad2antrr φ i 0 ..^ N j 1 i + 1 φ
527 0zd i 0 ..^ N j 1 i + 1 0
528 208 adantr i 0 ..^ N j 1 i + 1 N
529 173 a1i j 1 i + 1 0
530 497 zred j 1 i + 1 j
531 1red j 1 i + 1 1
532 0lt1 0 < 1
533 532 a1i j 1 i + 1 0 < 1
534 elfzle1 j 1 i + 1 1 j
535 529 531 530 533 534 ltletrd j 1 i + 1 0 < j
536 529 530 535 ltled j 1 i + 1 0 j
537 536 adantl i 0 ..^ N j 1 i + 1 0 j
538 530 adantl i 0 ..^ N j 1 i + 1 j
539 215 adantr i 0 ..^ N j 1 i + 1 i
540 1red i 0 ..^ N j 1 i + 1 1
541 539 540 readdcld i 0 ..^ N j 1 i + 1 i + 1
542 213 adantr i 0 ..^ N j 1 i + 1 N
543 elfzle2 j 1 i + 1 j i + 1
544 543 adantl i 0 ..^ N j 1 i + 1 j i + 1
545 301 adantr i 0 ..^ N j 1 i + 1 i + 1 N
546 538 541 542 544 545 letrd i 0 ..^ N j 1 i + 1 j N
547 527 528 519 537 546 elfzd i 0 ..^ N j 1 i + 1 j 0 N
548 547 adantll φ i 0 ..^ N j 1 i + 1 j 0 N
549 526 548 355 syl2anc φ i 0 ..^ N j 1 i + 1 C j : X
550 549 adantlr φ i 0 ..^ N x X j 1 i + 1 C j : X
551 simplr φ i 0 ..^ N x X j 1 i + 1 x X
552 550 551 ffvelrnd φ i 0 ..^ N x X j 1 i + 1 C j x
553 234 adantr i 0 ..^ N j 1 i + 1 i
554 553 peano2zd i 0 ..^ N j 1 i + 1 i + 1
555 554 519 zsubcld i 0 ..^ N j 1 i + 1 i + 1 - j
556 541 538 subge0d i 0 ..^ N j 1 i + 1 0 i + 1 - j j i + 1
557 544 556 mpbird i 0 ..^ N j 1 i + 1 0 i + 1 - j
558 541 538 resubcld i 0 ..^ N j 1 i + 1 i + 1 - j
559 558 leidd i 0 ..^ N j 1 i + 1 i + 1 - j i + 1 - j
560 530 535 elrpd j 1 i + 1 j +
561 560 adantl i 0 ..^ N j 1 i + 1 j +
562 541 561 ltsubrpd i 0 ..^ N j 1 i + 1 i + 1 - j < i + 1
563 558 541 542 562 545 ltletrd i 0 ..^ N j 1 i + 1 i + 1 - j < N
564 558 558 542 559 563 lelttrd i 0 ..^ N j 1 i + 1 i + 1 - j < N
565 558 542 564 ltled i 0 ..^ N j 1 i + 1 i + 1 - j N
566 527 528 555 557 565 elfzd i 0 ..^ N j 1 i + 1 i + 1 - j 0 N
567 566 adantll φ i 0 ..^ N j 1 i + 1 i + 1 - j 0 N
568 nfv k φ i + 1 - j 0 N
569 nfcv _ k i + 1 - j
570 461 569 nffv _ k D i + 1 - j
571 570 348 349 nff k D i + 1 - j : X
572 568 571 nfim k φ i + 1 - j 0 N D i + 1 - j : X
573 ovex i + 1 - j V
574 eleq1 k = i + 1 - j k 0 N i + 1 - j 0 N
575 574 anbi2d k = i + 1 - j φ k 0 N φ i + 1 - j 0 N
576 fveq2 k = i + 1 - j D k = D i + 1 - j
577 576 feq1d k = i + 1 - j D k : X D i + 1 - j : X
578 575 577 imbi12d k = i + 1 - j φ k 0 N D k : X φ i + 1 - j 0 N D i + 1 - j : X
579 11 a1i φ D = k 0 N S D n G k
580 fvexd φ k 0 N S D n G k V
581 579 580 fvmpt2d φ k 0 N D k = S D n G k
582 581 feq1d φ k 0 N D k : X S D n G k : X
583 9 582 mpbird φ k 0 N D k : X
584 572 573 578 583 vtoclf φ i + 1 - j 0 N D i + 1 - j : X
585 526 567 584 syl2anc φ i 0 ..^ N j 1 i + 1 D i + 1 - j : X
586 585 adantlr φ i 0 ..^ N x X j 1 i + 1 D i + 1 - j : X
587 586 551 ffvelrnd φ i 0 ..^ N x X j 1 i + 1 D i + 1 - j x
588 552 587 mulcld φ i 0 ..^ N x X j 1 i + 1 C j x D i + 1 - j x
589 525 588 mulcld φ i 0 ..^ N x X j 1 i + 1 ( i j 1 ) C j x D i + 1 - j x
590 1zzd i 0 ..^ N 1
591 234 peano2zd i 0 ..^ N i + 1
592 493 eqcomi 1 = 0 + 1
593 592 a1i i 0 ..^ N 1 = 0 + 1
594 173 a1i i 0 ..^ N 0
595 1red i 0 ..^ N 1
596 187 nn0ge0d i 0 ..^ N 0 i
597 594 215 595 596 leadd1dd i 0 ..^ N 0 + 1 i + 1
598 593 597 eqbrtrd i 0 ..^ N 1 i + 1
599 590 591 598 3jca i 0 ..^ N 1 i + 1 1 i + 1
600 eluz2 i + 1 1 1 i + 1 1 i + 1
601 599 600 sylibr i 0 ..^ N i + 1 1
602 eluzfz2 i + 1 1 i + 1 1 i + 1
603 601 602 syl i 0 ..^ N i + 1 1 i + 1
604 603 ad2antlr φ i 0 ..^ N x X i + 1 1 i + 1
605 oveq1 j = i + 1 j 1 = i + 1 - 1
606 605 oveq2d j = i + 1 ( i j 1 ) = ( i i + 1 - 1 )
607 fveq2 j = i + 1 C j = C i + 1
608 607 fveq1d j = i + 1 C j x = C i + 1 x
609 oveq2 j = i + 1 i + 1 - j = i + 1 - i + 1
610 609 fveq2d j = i + 1 D i + 1 - j = D i + 1 - i + 1
611 610 fveq1d j = i + 1 D i + 1 - j x = D i + 1 - i + 1 x
612 608 611 oveq12d j = i + 1 C j x D i + 1 - j x = C i + 1 x D i + 1 - i + 1 x
613 606 612 oveq12d j = i + 1 ( i j 1 ) C j x D i + 1 - j x = ( i i + 1 - 1 ) C i + 1 x D i + 1 - i + 1 x
614 515 516 517 589 604 613 fsumsplit1 φ i 0 ..^ N x X j = 1 i + 1 ( i j 1 ) C j x D i + 1 - j x = ( i i + 1 - 1 ) C i + 1 x D i + 1 - i + 1 x + j 1 i + 1 i + 1 ( i j 1 ) C j x D i + 1 - j x
615 1cnd i 0 ..^ N 1
616 504 615 pncand i 0 ..^ N i + 1 - 1 = i
617 616 oveq2d i 0 ..^ N ( i i + 1 - 1 ) = ( i i)
618 bcnn i 0 ( i i) = 1
619 187 618 syl i 0 ..^ N ( i i) = 1
620 617 619 eqtrd i 0 ..^ N ( i i + 1 - 1 ) = 1
621 504 615 addcld i 0 ..^ N i + 1
622 621 subidd i 0 ..^ N i + 1 - i + 1 = 0
623 622 fveq2d i 0 ..^ N D i + 1 - i + 1 = D 0
624 623 fveq1d i 0 ..^ N D i + 1 - i + 1 x = D 0 x
625 624 oveq2d i 0 ..^ N C i + 1 x D i + 1 - i + 1 x = C i + 1 x D 0 x
626 620 625 oveq12d i 0 ..^ N ( i i + 1 - 1 ) C i + 1 x D i + 1 - i + 1 x = 1 C i + 1 x D 0 x
627 626 ad2antlr φ i 0 ..^ N x X ( i i + 1 - 1 ) C i + 1 x D i + 1 - i + 1 x = 1 C i + 1 x D 0 x
628 simpl φ i 0 ..^ N φ
629 fzofzp1 i 0 ..^ N i + 1 0 N
630 629 adantl φ i 0 ..^ N i + 1 0 N
631 nfv k φ i + 1 0 N
632 nfcv _ k i + 1
633 345 632 nffv _ k C i + 1
634 633 348 349 nff k C i + 1 : X
635 631 634 nfim k φ i + 1 0 N C i + 1 : X
636 ovex i + 1 V
637 eleq1 k = i + 1 k 0 N i + 1 0 N
638 637 anbi2d k = i + 1 φ k 0 N φ i + 1 0 N
639 fveq2 k = i + 1 C k = C i + 1
640 639 feq1d k = i + 1 C k : X C i + 1 : X
641 638 640 imbi12d k = i + 1 φ k 0 N C k : X φ i + 1 0 N C i + 1 : X
642 635 636 641 229 vtoclf φ i + 1 0 N C i + 1 : X
643 628 630 642 syl2anc φ i 0 ..^ N C i + 1 : X
644 643 ffvelrnda φ i 0 ..^ N x X C i + 1 x
645 nfv k φ 0 0 N
646 nfcv _ k 0
647 461 646 nffv _ k D 0
648 647 348 349 nff k D 0 : X
649 645 648 nfim k φ 0 0 N D 0 : X
650 c0ex 0 V
651 eleq1 k = 0 k 0 N 0 0 N
652 651 anbi2d k = 0 φ k 0 N φ 0 0 N
653 fveq2 k = 0 D k = D 0
654 653 feq1d k = 0 D k : X D 0 : X
655 652 654 imbi12d k = 0 φ k 0 N D k : X φ 0 0 N D 0 : X
656 649 650 655 583 vtoclf φ 0 0 N D 0 : X
657 12 117 656 syl2anc φ D 0 : X
658 657 adantr φ i 0 ..^ N D 0 : X
659 658 ffvelrnda φ i 0 ..^ N x X D 0 x
660 644 659 mulcld φ i 0 ..^ N x X C i + 1 x D 0 x
661 660 mulid2d φ i 0 ..^ N x X 1 C i + 1 x D 0 x = C i + 1 x D 0 x
662 627 661 eqtrd φ i 0 ..^ N x X ( i i + 1 - 1 ) C i + 1 x D i + 1 - i + 1 x = C i + 1 x D 0 x
663 1m1e0 1 1 = 0
664 663 fveq2i 1 1 = 0
665 13 eqcomi 0 = 0
666 664 665 eqtr2i 0 = 1 1
667 666 a1i i 0 ..^ N 0 = 1 1
668 187 667 eleqtrd i 0 ..^ N i 1 1
669 fzdifsuc2 i 1 1 1 i = 1 i + 1 i + 1
670 668 669 syl i 0 ..^ N 1 i = 1 i + 1 i + 1
671 670 eqcomd i 0 ..^ N 1 i + 1 i + 1 = 1 i
672 671 sumeq1d i 0 ..^ N j 1 i + 1 i + 1 ( i j 1 ) C j x D i + 1 - j x = j = 1 i ( i j 1 ) C j x D i + 1 - j x
673 672 ad2antlr φ i 0 ..^ N x X j 1 i + 1 i + 1 ( i j 1 ) C j x D i + 1 - j x = j = 1 i ( i j 1 ) C j x D i + 1 - j x
674 662 673 oveq12d φ i 0 ..^ N x X ( i i + 1 - 1 ) C i + 1 x D i + 1 - i + 1 x + j 1 i + 1 i + 1 ( i j 1 ) C j x D i + 1 - j x = C i + 1 x D 0 x + j = 1 i ( i j 1 ) C j x D i + 1 - j x
675 514 614 674 3eqtrd φ i 0 ..^ N x X j = 1 i + 1 ( i j 1 ) C j - 1 + 1 x D i j 1 x = C i + 1 x D 0 x + j = 1 i ( i j 1 ) C j x D i + 1 - j x
676 492 496 675 3eqtrd φ i 0 ..^ N x X k = 0 i ( i k) C k + 1 x D i k x = C i + 1 x D 0 x + j = 1 i ( i j 1 ) C j x D i + 1 - j x
677 nfcv _ k ( i 0 )
678 345 646 nffv _ k C 0
679 678 458 nffv _ k C 0 x
680 nfcv _ k i + 1 - 0
681 461 680 nffv _ k D i + 1 - 0
682 681 458 nffv _ k D i + 1 - 0 x
683 679 455 682 nfov _ k C 0 x D i + 1 - 0 x
684 677 455 683 nfov _ k ( i 0 ) C 0 x D i + 1 - 0 x
685 665 a1i i 0 ..^ N 0 = 0
686 187 685 eleqtrrd i 0 ..^ N i 0
687 eluzfz1 i 0 0 0 i
688 686 687 syl i 0 ..^ N 0 0 i
689 688 ad2antlr φ i 0 ..^ N x X 0 0 i
690 oveq2 k = 0 ( i k) = ( i 0 )
691 110 fveq1d k = 0 C k x = C 0 x
692 oveq2 k = 0 i + 1 - k = i + 1 - 0
693 692 fveq2d k = 0 D i + 1 - k = D i + 1 - 0
694 693 fveq1d k = 0 D i + 1 - k x = D i + 1 - 0 x
695 691 694 oveq12d k = 0 C k x D i + 1 - k x = C 0 x D i + 1 - 0 x
696 690 695 oveq12d k = 0 ( i k) C k x D i + 1 - k x = ( i 0 ) C 0 x D i + 1 - 0 x
697 472 684 439 441 689 696 fsumsplit1 φ i 0 ..^ N x X k = 0 i ( i k) C k x D i + 1 - k x = ( i 0 ) C 0 x D i + 1 - 0 x + k 0 i 0 ( i k) C k x D i + 1 - k x
698 621 subid1d i 0 ..^ N i + 1 - 0 = i + 1
699 698 fveq2d i 0 ..^ N D i + 1 - 0 = D i + 1
700 699 fveq1d i 0 ..^ N D i + 1 - 0 x = D i + 1 x
701 700 oveq2d i 0 ..^ N C 0 x D i + 1 - 0 x = C 0 x D i + 1 x
702 701 oveq2d i 0 ..^ N ( i 0 ) C 0 x D i + 1 - 0 x = ( i 0 ) C 0 x D i + 1 x
703 702 oveq1d i 0 ..^ N ( i 0 ) C 0 x D i + 1 - 0 x + k 0 i 0 ( i k) C k x D i + 1 - k x = ( i 0 ) C 0 x D i + 1 x + k 0 i 0 ( i k) C k x D i + 1 - k x
704 703 ad2antlr φ i 0 ..^ N x X ( i 0 ) C 0 x D i + 1 - 0 x + k 0 i 0 ( i k) C k x D i + 1 - k x = ( i 0 ) C 0 x D i + 1 x + k 0 i 0 ( i k) C k x D i + 1 - k x
705 bcn0 i 0 ( i 0 ) = 1
706 187 705 syl i 0 ..^ N ( i 0 ) = 1
707 706 oveq1d i 0 ..^ N ( i 0 ) C 0 x D i + 1 x = 1 C 0 x D i + 1 x
708 707 ad2antlr φ i 0 ..^ N x X ( i 0 ) C 0 x D i + 1 x = 1 C 0 x D i + 1 x
709 678 348 349 nff k C 0 : X
710 645 709 nfim k φ 0 0 N C 0 : X
711 110 feq1d k = 0 C k : X C 0 : X
712 652 711 imbi12d k = 0 φ k 0 N C k : X φ 0 0 N C 0 : X
713 710 650 712 229 vtoclf φ 0 0 N C 0 : X
714 12 117 713 syl2anc φ C 0 : X
715 714 adantr φ i 0 ..^ N C 0 : X
716 715 ffvelrnda φ i 0 ..^ N x X C 0 x
717 461 632 nffv _ k D i + 1
718 717 348 349 nff k D i + 1 : X
719 631 718 nfim k φ i + 1 0 N D i + 1 : X
720 fveq2 k = i + 1 D k = D i + 1
721 720 feq1d k = i + 1 D k : X D i + 1 : X
722 638 721 imbi12d k = i + 1 φ k 0 N D k : X φ i + 1 0 N D i + 1 : X
723 719 636 722 583 vtoclf φ i + 1 0 N D i + 1 : X
724 628 630 723 syl2anc φ i 0 ..^ N D i + 1 : X
725 724 ffvelrnda φ i 0 ..^ N x X D i + 1 x
726 716 725 mulcld φ i 0 ..^ N x X C 0 x D i + 1 x
727 726 mulid2d φ i 0 ..^ N x X 1 C 0 x D i + 1 x = C 0 x D i + 1 x
728 708 727 eqtrd φ i 0 ..^ N x X ( i 0 ) C 0 x D i + 1 x = C 0 x D i + 1 x
729 nfv j i 0 ..^ N
730 1zzd i 0 ..^ N j 0 i 0 1
731 234 adantr i 0 ..^ N j 0 i 0 i
732 eldifi j 0 i 0 j 0 i
733 elfzelz j 0 i j
734 732 733 syl j 0 i 0 j
735 734 adantl i 0 ..^ N j 0 i 0 j
736 elfznn0 j 0 i j 0
737 732 736 syl j 0 i 0 j 0
738 eldifsni j 0 i 0 j 0
739 737 738 jca j 0 i 0 j 0 j 0
740 elnnne0 j j 0 j 0
741 739 740 sylibr j 0 i 0 j
742 nnge1 j 1 j
743 741 742 syl j 0 i 0 1 j
744 743 adantl i 0 ..^ N j 0 i 0 1 j
745 elfzle2 j 0 i j i
746 732 745 syl j 0 i 0 j i
747 746 adantl i 0 ..^ N j 0 i 0 j i
748 730 731 735 744 747 elfzd i 0 ..^ N j 0 i 0 j 1 i
749 748 ex i 0 ..^ N j 0 i 0 j 1 i
750 0zd j 1 i 0
751 elfzel2 j 1 i i
752 elfzelz j 1 i j
753 173 a1i j 1 i 0
754 752 zred j 1 i j
755 1red j 1 i 1
756 532 a1i j 1 i 0 < 1
757 elfzle1 j 1 i 1 j
758 753 755 754 756 757 ltletrd j 1 i 0 < j
759 753 754 758 ltled j 1 i 0 j
760 elfzle2 j 1 i j i
761 750 751 752 759 760 elfzd j 1 i j 0 i
762 753 758 gtned j 1 i j 0
763 nelsn j 0 ¬ j 0
764 762 763 syl j 1 i ¬ j 0
765 761 764 eldifd j 1 i j 0 i 0
766 765 adantl i 0 ..^ N j 1 i j 0 i 0
767 766 ex i 0 ..^ N j 1 i j 0 i 0
768 749 767 impbid i 0 ..^ N j 0 i 0 j 1 i
769 729 768 alrimi i 0 ..^ N j j 0 i 0 j 1 i
770 dfcleq 0 i 0 = 1 i j j 0 i 0 j 1 i
771 769 770 sylibr i 0 ..^ N 0 i 0 = 1 i
772 771 sumeq1d i 0 ..^ N k 0 i 0 ( i k) C k x D i + 1 - k x = k = 1 i ( i k) C k x D i + 1 - k x
773 772 ad2antlr φ i 0 ..^ N x X k 0 i 0 ( i k) C k x D i + 1 - k x = k = 1 i ( i k) C k x D i + 1 - k x
774 728 773 oveq12d φ i 0 ..^ N x X ( i 0 ) C 0 x D i + 1 x + k 0 i 0 ( i k) C k x D i + 1 - k x = C 0 x D i + 1 x + k = 1 i ( i k) C k x D i + 1 - k x
775 697 704 774 3eqtrd φ i 0 ..^ N x X k = 0 i ( i k) C k x D i + 1 - k x = C 0 x D i + 1 x + k = 1 i ( i k) C k x D i + 1 - k x
776 676 775 oveq12d φ i 0 ..^ N x X k = 0 i ( i k) C k + 1 x D i k x + k = 0 i ( i k) C k x D i + 1 - k x = C i + 1 x D 0 x + j = 1 i ( i j 1 ) C j x D i + 1 - j x + C 0 x D i + 1 x + k = 1 i ( i k) C k x D i + 1 - k x
777 fzfid φ i 0 ..^ N x X 1 i Fin
778 187 adantr i 0 ..^ N j 1 i i 0
779 766 734 syl i 0 ..^ N j 1 i j
780 1zzd i 0 ..^ N j 1 i 1
781 779 780 zsubcld i 0 ..^ N j 1 i j 1
782 778 781 bccld i 0 ..^ N j 1 i ( i j 1 ) 0
783 782 nn0cnd i 0 ..^ N j 1 i ( i j 1 )
784 783 adantll φ i 0 ..^ N j 1 i ( i j 1 )
785 784 adantlr φ i 0 ..^ N x X j 1 i ( i j 1 )
786 simpl φ i 0 ..^ N x X j 1 i φ i 0 ..^ N x X
787 fzelp1 j 1 i j 1 i + 1
788 787 adantl φ i 0 ..^ N x X j 1 i j 1 i + 1
789 786 788 552 syl2anc φ i 0 ..^ N x X j 1 i C j x
790 788 587 syldan φ i 0 ..^ N x X j 1 i D i + 1 - j x
791 789 790 mulcld φ i 0 ..^ N x X j 1 i C j x D i + 1 - j x
792 785 791 mulcld φ i 0 ..^ N x X j 1 i ( i j 1 ) C j x D i + 1 - j x
793 777 792 fsumcl φ i 0 ..^ N x X j = 1 i ( i j 1 ) C j x D i + 1 - j x
794 187 adantr i 0 ..^ N k 1 i i 0
795 elfzelz k 1 i k
796 795 adantl i 0 ..^ N k 1 i k
797 794 796 bccld i 0 ..^ N k 1 i ( i k) 0
798 797 nn0cnd i 0 ..^ N k 1 i ( i k)
799 798 adantll φ i 0 ..^ N k 1 i ( i k)
800 799 adantlr φ i 0 ..^ N x X k 1 i ( i k)
801 simpll φ i 0 ..^ N x X k 1 i φ i 0 ..^ N
802 simplr φ i 0 ..^ N x X k 1 i x X
803 761 ssriv 1 i 0 i
804 id k 1 i k 1 i
805 803 804 sselid k 1 i k 0 i
806 805 adantl φ i 0 ..^ N x X k 1 i k 0 i
807 801 802 806 433 syl21anc φ i 0 ..^ N x X k 1 i C k x
808 806 435 syldan φ i 0 ..^ N x X k 1 i D i + 1 - k x
809 807 808 mulcld φ i 0 ..^ N x X k 1 i C k x D i + 1 - k x
810 800 809 mulcld φ i 0 ..^ N x X k 1 i ( i k) C k x D i + 1 - k x
811 777 810 fsumcl φ i 0 ..^ N x X k = 1 i ( i k) C k x D i + 1 - k x
812 660 793 726 811 add4d φ i 0 ..^ N x X C i + 1 x D 0 x + j = 1 i ( i j 1 ) C j x D i + 1 - j x + C 0 x D i + 1 x + k = 1 i ( i k) C k x D i + 1 - k x = C i + 1 x D 0 x + C 0 x D i + 1 x + j = 1 i ( i j 1 ) C j x D i + 1 - j x + k = 1 i ( i k) C k x D i + 1 - k x
813 oveq1 j = k j 1 = k 1
814 813 oveq2d j = k ( i j 1 ) = ( i k 1 )
815 fveq2 j = k C j = C k
816 815 fveq1d j = k C j x = C k x
817 oveq2 j = k i + 1 - j = i + 1 - k
818 817 fveq2d j = k D i + 1 - j = D i + 1 - k
819 818 fveq1d j = k D i + 1 - j x = D i + 1 - k x
820 816 819 oveq12d j = k C j x D i + 1 - j x = C k x D i + 1 - k x
821 814 820 oveq12d j = k ( i j 1 ) C j x D i + 1 - j x = ( i k 1 ) C k x D i + 1 - k x
822 nfcv _ k 1 i
823 nfcv _ j 1 i
824 nfcv _ k ( i j 1 )
825 347 458 nffv _ k C j x
826 570 458 nffv _ k D i + 1 - j x
827 825 455 826 nfov _ k C j x D i + 1 - j x
828 824 455 827 nfov _ k ( i j 1 ) C j x D i + 1 - j x
829 nfcv _ j ( i k 1 ) C k x D i + 1 - k x
830 821 822 823 828 829 cbvsum j = 1 i ( i j 1 ) C j x D i + 1 - j x = k = 1 i ( i k 1 ) C k x D i + 1 - k x
831 830 a1i φ i 0 ..^ N x X j = 1 i ( i j 1 ) C j x D i + 1 - j x = k = 1 i ( i k 1 ) C k x D i + 1 - k x
832 831 oveq1d φ i 0 ..^ N x X j = 1 i ( i j 1 ) C j x D i + 1 - j x + k = 1 i ( i k) C k x D i + 1 - k x = k = 1 i ( i k 1 ) C k x D i + 1 - k x + k = 1 i ( i k) C k x D i + 1 - k x
833 peano2zm k k 1
834 796 833 syl i 0 ..^ N k 1 i k 1
835 794 834 bccld i 0 ..^ N k 1 i ( i k 1 ) 0
836 835 nn0cnd i 0 ..^ N k 1 i ( i k 1 )
837 836 adantll φ i 0 ..^ N k 1 i ( i k 1 )
838 837 adantlr φ i 0 ..^ N x X k 1 i ( i k 1 )
839 838 809 mulcld φ i 0 ..^ N x X k 1 i ( i k 1 ) C k x D i + 1 - k x
840 777 839 810 fsumadd φ i 0 ..^ N x X k = 1 i ( i k 1 ) C k x D i + 1 - k x + ( i k) C k x D i + 1 - k x = k = 1 i ( i k 1 ) C k x D i + 1 - k x + k = 1 i ( i k) C k x D i + 1 - k x
841 840 eqcomd φ i 0 ..^ N x X k = 1 i ( i k 1 ) C k x D i + 1 - k x + k = 1 i ( i k) C k x D i + 1 - k x = k = 1 i ( i k 1 ) C k x D i + 1 - k x + ( i k) C k x D i + 1 - k x
842 836 798 addcomd i 0 ..^ N k 1 i ( i k 1 ) + ( i k) = ( i k) + ( i k 1 )
843 bcpasc i 0 k ( i k) + ( i k 1 ) = ( i + 1 k)
844 794 796 843 syl2anc i 0 ..^ N k 1 i ( i k) + ( i k 1 ) = ( i + 1 k)
845 842 844 eqtr2d i 0 ..^ N k 1 i ( i + 1 k) = ( i k 1 ) + ( i k)
846 845 oveq1d i 0 ..^ N k 1 i ( i + 1 k) C k x D i + 1 - k x = ( i k 1 ) + ( i k) C k x D i + 1 - k x
847 846 adantll φ i 0 ..^ N k 1 i ( i + 1 k) C k x D i + 1 - k x = ( i k 1 ) + ( i k) C k x D i + 1 - k x
848 847 adantlr φ i 0 ..^ N x X k 1 i ( i + 1 k) C k x D i + 1 - k x = ( i k 1 ) + ( i k) C k x D i + 1 - k x
849 838 800 809 adddird φ i 0 ..^ N x X k 1 i ( i k 1 ) + ( i k) C k x D i + 1 - k x = ( i k 1 ) C k x D i + 1 - k x + ( i k) C k x D i + 1 - k x
850 848 849 eqtr2d φ i 0 ..^ N x X k 1 i ( i k 1 ) C k x D i + 1 - k x + ( i k) C k x D i + 1 - k x = ( i + 1 k) C k x D i + 1 - k x
851 850 sumeq2dv φ i 0 ..^ N x X k = 1 i ( i k 1 ) C k x D i + 1 - k x + ( i k) C k x D i + 1 - k x = k = 1 i ( i + 1 k) C k x D i + 1 - k x
852 832 841 851 3eqtrd φ i 0 ..^ N x X j = 1 i ( i j 1 ) C j x D i + 1 - j x + k = 1 i ( i k) C k x D i + 1 - k x = k = 1 i ( i + 1 k) C k x D i + 1 - k x
853 852 oveq2d φ i 0 ..^ N x X C i + 1 x D 0 x + C 0 x D i + 1 x + j = 1 i ( i j 1 ) C j x D i + 1 - j x + k = 1 i ( i k) C k x D i + 1 - k x = C i + 1 x D 0 x + C 0 x D i + 1 x + k = 1 i ( i + 1 k) C k x D i + 1 - k x
854 peano2nn0 i 0 i + 1 0
855 794 854 syl i 0 ..^ N k 1 i i + 1 0
856 855 796 bccld i 0 ..^ N k 1 i ( i + 1 k) 0
857 856 nn0cnd i 0 ..^ N k 1 i ( i + 1 k)
858 857 adantll φ i 0 ..^ N k 1 i ( i + 1 k)
859 858 adantlr φ i 0 ..^ N x X k 1 i ( i + 1 k)
860 859 809 mulcld φ i 0 ..^ N x X k 1 i ( i + 1 k) C k x D i + 1 - k x
861 777 860 fsumcl φ i 0 ..^ N x X k = 1 i ( i + 1 k) C k x D i + 1 - k x
862 660 726 861 addassd φ i 0 ..^ N x X C i + 1 x D 0 x + C 0 x D i + 1 x + k = 1 i ( i + 1 k) C k x D i + 1 - k x = C i + 1 x D 0 x + C 0 x D i + 1 x + k = 1 i ( i + 1 k) C k x D i + 1 - k x
863 187 854 syl i 0 ..^ N i + 1 0
864 bcn0 i + 1 0 ( i + 1 0 ) = 1
865 863 864 syl i 0 ..^ N ( i + 1 0 ) = 1
866 865 701 oveq12d i 0 ..^ N ( i + 1 0 ) C 0 x D i + 1 - 0 x = 1 C 0 x D i + 1 x
867 866 ad2antlr φ i 0 ..^ N x X ( i + 1 0 ) C 0 x D i + 1 - 0 x = 1 C 0 x D i + 1 x
868 867 727 eqtr2d φ i 0 ..^ N x X C 0 x D i + 1 x = ( i + 1 0 ) C 0 x D i + 1 - 0 x
869 771 ad2antlr φ i 0 ..^ N x X 0 i 0 = 1 i
870 869 eqcomd φ i 0 ..^ N x X 1 i = 0 i 0
871 870 sumeq1d φ i 0 ..^ N x X k = 1 i ( i + 1 k) C k x D i + 1 - k x = k 0 i 0 ( i + 1 k) C k x D i + 1 - k x
872 868 871 oveq12d φ i 0 ..^ N x X C 0 x D i + 1 x + k = 1 i ( i + 1 k) C k x D i + 1 - k x = ( i + 1 0 ) C 0 x D i + 1 - 0 x + k 0 i 0 ( i + 1 k) C k x D i + 1 - k x
873 nfcv _ k ( i + 1 0 )
874 873 455 683 nfov _ k ( i + 1 0 ) C 0 x D i + 1 - 0 x
875 199 854 syl i 0 ..^ N k 0 i i + 1 0
876 875 201 bccld i 0 ..^ N k 0 i ( i + 1 k) 0
877 876 nn0cnd i 0 ..^ N k 0 i ( i + 1 k)
878 877 adantll φ i 0 ..^ N k 0 i ( i + 1 k)
879 878 adantlr φ i 0 ..^ N x X k 0 i ( i + 1 k)
880 879 436 mulcld φ i 0 ..^ N x X k 0 i ( i + 1 k) C k x D i + 1 - k x
881 oveq2 k = 0 ( i + 1 k) = ( i + 1 0 )
882 881 695 oveq12d k = 0 ( i + 1 k) C k x D i + 1 - k x = ( i + 1 0 ) C 0 x D i + 1 - 0 x
883 472 874 439 880 689 882 fsumsplit1 φ i 0 ..^ N x X k = 0 i ( i + 1 k) C k x D i + 1 - k x = ( i + 1 0 ) C 0 x D i + 1 - 0 x + k 0 i 0 ( i + 1 k) C k x D i + 1 - k x
884 883 eqcomd φ i 0 ..^ N x X ( i + 1 0 ) C 0 x D i + 1 - 0 x + k 0 i 0 ( i + 1 k) C k x D i + 1 - k x = k = 0 i ( i + 1 k) C k x D i + 1 - k x
885 872 884 eqtrd φ i 0 ..^ N x X C 0 x D i + 1 x + k = 1 i ( i + 1 k) C k x D i + 1 - k x = k = 0 i ( i + 1 k) C k x D i + 1 - k x
886 885 oveq2d φ i 0 ..^ N x X C i + 1 x D 0 x + C 0 x D i + 1 x + k = 1 i ( i + 1 k) C k x D i + 1 - k x = C i + 1 x D 0 x + k = 0 i ( i + 1 k) C k x D i + 1 - k x
887 bcnn i + 1 0 ( i + 1 i + 1 ) = 1
888 863 887 syl i 0 ..^ N ( i + 1 i + 1 ) = 1
889 888 ad2antlr φ i 0 ..^ N x X ( i + 1 i + 1 ) = 1
890 889 oveq1d φ i 0 ..^ N x X ( i + 1 i + 1 ) C i + 1 x D i + 1 - i + 1 x = 1 C i + 1 x D i + 1 - i + 1 x
891 623 adantl φ i 0 ..^ N D i + 1 - i + 1 = D 0
892 891 feq1d φ i 0 ..^ N D i + 1 - i + 1 : X D 0 : X
893 658 892 mpbird φ i 0 ..^ N D i + 1 - i + 1 : X
894 893 adantr φ i 0 ..^ N x X D i + 1 - i + 1 : X
895 simpr φ i 0 ..^ N x X x X
896 894 895 ffvelrnd φ i 0 ..^ N x X D i + 1 - i + 1 x
897 644 896 mulcld φ i 0 ..^ N x X C i + 1 x D i + 1 - i + 1 x
898 897 mulid2d φ i 0 ..^ N x X 1 C i + 1 x D i + 1 - i + 1 x = C i + 1 x D i + 1 - i + 1 x
899 625 ad2antlr φ i 0 ..^ N x X C i + 1 x D i + 1 - i + 1 x = C i + 1 x D 0 x
900 890 898 899 3eqtrrd φ i 0 ..^ N x X C i + 1 x D 0 x = ( i + 1 i + 1 ) C i + 1 x D i + 1 - i + 1 x
901 fzdifsuc i 0 0 i = 0 i + 1 i + 1
902 686 901 syl i 0 ..^ N 0 i = 0 i + 1 i + 1
903 902 sumeq1d i 0 ..^ N k = 0 i ( i + 1 k) C k x D i + 1 - k x = k 0 i + 1 i + 1 ( i + 1 k) C k x D i + 1 - k x
904 903 ad2antlr φ i 0 ..^ N x X k = 0 i ( i + 1 k) C k x D i + 1 - k x = k 0 i + 1 i + 1 ( i + 1 k) C k x D i + 1 - k x
905 900 904 oveq12d φ i 0 ..^ N x X C i + 1 x D 0 x + k = 0 i ( i + 1 k) C k x D i + 1 - k x = ( i + 1 i + 1 ) C i + 1 x D i + 1 - i + 1 x + k 0 i + 1 i + 1 ( i + 1 k) C k x D i + 1 - k x
906 nfcv _ k ( i + 1 i + 1 )
907 633 458 nffv _ k C i + 1 x
908 nfcv _ k i + 1 - i + 1
909 461 908 nffv _ k D i + 1 - i + 1
910 909 458 nffv _ k D i + 1 - i + 1 x
911 907 455 910 nfov _ k C i + 1 x D i + 1 - i + 1 x
912 906 455 911 nfov _ k ( i + 1 i + 1 ) C i + 1 x D i + 1 - i + 1 x
913 fzfid φ i 0 ..^ N x X 0 i + 1 Fin
914 863 adantr i 0 ..^ N k 0 i + 1 i + 1 0
915 elfzelz k 0 i + 1 k
916 915 adantl i 0 ..^ N k 0 i + 1 k
917 914 916 bccld i 0 ..^ N k 0 i + 1 ( i + 1 k) 0
918 917 nn0cnd i 0 ..^ N k 0 i + 1 ( i + 1 k)
919 918 adantll φ i 0 ..^ N k 0 i + 1 ( i + 1 k)
920 919 adantlr φ i 0 ..^ N x X k 0 i + 1 ( i + 1 k)
921 628 adantr φ i 0 ..^ N k 0 i + 1 φ
922 96 a1i i 0 ..^ N k 0 i + 1 0
923 208 adantr i 0 ..^ N k 0 i + 1 N
924 elfzle1 k 0 i + 1 0 k
925 924 adantl i 0 ..^ N k 0 i + 1 0 k
926 916 zred i 0 ..^ N k 0 i + 1 k
927 914 nn0red i 0 ..^ N k 0 i + 1 i + 1
928 213 adantr i 0 ..^ N k 0 i + 1 N
929 elfzle2 k 0 i + 1 k i + 1
930 929 adantl i 0 ..^ N k 0 i + 1 k i + 1
931 301 adantr i 0 ..^ N k 0 i + 1 i + 1 N
932 926 927 928 930 931 letrd i 0 ..^ N k 0 i + 1 k N
933 922 923 916 925 932 elfzd i 0 ..^ N k 0 i + 1 k 0 N
934 933 adantll φ i 0 ..^ N k 0 i + 1 k 0 N
935 921 934 229 syl2anc φ i 0 ..^ N k 0 i + 1 C k : X
936 935 adantlr φ i 0 ..^ N x X k 0 i + 1 C k : X
937 simplr φ i 0 ..^ N x X k 0 i + 1 x X
938 936 937 ffvelrnd φ i 0 ..^ N x X k 0 i + 1 C k x
939 921 adantlr φ i 0 ..^ N x X k 0 i + 1 φ
940 591 adantr i 0 ..^ N k 0 i + 1 i + 1
941 940 916 zsubcld i 0 ..^ N k 0 i + 1 i + 1 - k
942 927 926 subge0d i 0 ..^ N k 0 i + 1 0 i + 1 - k k i + 1
943 930 942 mpbird i 0 ..^ N k 0 i + 1 0 i + 1 - k
944 927 926 resubcld i 0 ..^ N k 0 i + 1 i + 1 - k
945 928 926 resubcld i 0 ..^ N k 0 i + 1 N k
946 928 173 247 sylancl i 0 ..^ N k 0 i + 1 N 0
947 927 928 926 931 lesub1dd i 0 ..^ N k 0 i + 1 i + 1 - k N k
948 173 a1i i 0 ..^ N k 0 i + 1 0
949 948 926 928 925 lesub2dd i 0 ..^ N k 0 i + 1 N k N 0
950 944 945 946 947 949 letrd i 0 ..^ N k 0 i + 1 i + 1 - k N 0
951 253 adantr i 0 ..^ N k 0 i + 1 N 0 = N
952 950 951 breqtrd i 0 ..^ N k 0 i + 1 i + 1 - k N
953 922 923 941 943 952 elfzd i 0 ..^ N k 0 i + 1 i + 1 - k 0 N
954 953 adantll φ i 0 ..^ N k 0 i + 1 i + 1 - k 0 N
955 954 adantlr φ i 0 ..^ N x X k 0 i + 1 i + 1 - k 0 N
956 fveq2 j = i + 1 - k D j = D i + 1 - k
957 956 feq1d j = i + 1 - k D j : X D i + 1 - k : X
958 310 957 imbi12d j = i + 1 - k φ j 0 N D j : X φ i + 1 - k 0 N D i + 1 - k : X
959 461 346 nffv _ k D j
960 959 348 349 nff k D j : X
961 343 960 nfim k φ j 0 N D j : X
962 fveq2 k = j D k = D j
963 962 feq1d k = j D k : X D j : X
964 267 963 imbi12d k = j φ k 0 N D k : X φ j 0 N D j : X
965 961 964 583 chvarfv φ j 0 N D j : X
966 308 958 965 vtocl φ i + 1 - k 0 N D i + 1 - k : X
967 939 955 966 syl2anc φ i 0 ..^ N x X k 0 i + 1 D i + 1 - k : X
968 967 937 ffvelrnd φ i 0 ..^ N x X k 0 i + 1 D i + 1 - k x
969 938 968 mulcld φ i 0 ..^ N x X k 0 i + 1 C k x D i + 1 - k x
970 920 969 mulcld φ i 0 ..^ N x X k 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
971 863 685 eleqtrrd i 0 ..^ N i + 1 0
972 eluzfz2 i + 1 0 i + 1 0 i + 1
973 971 972 syl i 0 ..^ N i + 1 0 i + 1
974 973 ad2antlr φ i 0 ..^ N x X i + 1 0 i + 1
975 oveq2 k = i + 1 ( i + 1 k) = ( i + 1 i + 1 )
976 639 fveq1d k = i + 1 C k x = C i + 1 x
977 oveq2 k = i + 1 i + 1 - k = i + 1 - i + 1
978 977 fveq2d k = i + 1 D i + 1 - k = D i + 1 - i + 1
979 978 fveq1d k = i + 1 D i + 1 - k x = D i + 1 - i + 1 x
980 976 979 oveq12d k = i + 1 C k x D i + 1 - k x = C i + 1 x D i + 1 - i + 1 x
981 975 980 oveq12d k = i + 1 ( i + 1 k) C k x D i + 1 - k x = ( i + 1 i + 1 ) C i + 1 x D i + 1 - i + 1 x
982 472 912 913 970 974 981 fsumsplit1 φ i 0 ..^ N x X k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x = ( i + 1 i + 1 ) C i + 1 x D i + 1 - i + 1 x + k 0 i + 1 i + 1 ( i + 1 k) C k x D i + 1 - k x
983 982 eqcomd φ i 0 ..^ N x X ( i + 1 i + 1 ) C i + 1 x D i + 1 - i + 1 x + k 0 i + 1 i + 1 ( i + 1 k) C k x D i + 1 - k x = k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
984 886 905 983 3eqtrd φ i 0 ..^ N x X C i + 1 x D 0 x + C 0 x D i + 1 x + k = 1 i ( i + 1 k) C k x D i + 1 - k x = k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
985 853 862 984 3eqtrd φ i 0 ..^ N x X C i + 1 x D 0 x + C 0 x D i + 1 x + j = 1 i ( i j 1 ) C j x D i + 1 - j x + k = 1 i ( i k) C k x D i + 1 - k x = k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
986 776 812 985 3eqtrd φ i 0 ..^ N x X k = 0 i ( i k) C k + 1 x D i k x + k = 0 i ( i k) C k x D i + 1 - k x = k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
987 438 442 986 3eqtrd φ i 0 ..^ N x X k = 0 i ( i k) C k + 1 x D i k x + C k x D i + 1 - k x = k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
988 987 mpteq2dva φ i 0 ..^ N x X k = 0 i ( i k) C k + 1 x D i k x + C k x D i + 1 - k x = x X k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
989 422 988 eqtrd φ i 0 ..^ N dx X k = 0 i ( i k) C k x D i k x dS x = x X k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
990 989 adantr φ i 0 ..^ N S D n x X A B i = x X k = 0 i ( i k) C k x D i k x dx X k = 0 i ( i k) C k x D i k x dS x = x X k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
991 191 193 990 3eqtrd φ i 0 ..^ N S D n x X A B i = x X k = 0 i ( i k) C k x D i k x S D n x X A B i + 1 = x X k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
992 180 181 184 991 syl21anc i 0 ..^ N φ S D n x X A B i = x X k = 0 i ( i k) C k x D i k x φ S D n x X A B i + 1 = x X k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
993 992 3exp i 0 ..^ N φ S D n x X A B i = x X k = 0 i ( i k) C k x D i k x φ S D n x X A B i + 1 = x X k = 0 i + 1 ( i + 1 k) C k x D i + 1 - k x
994 44 57 70 83 179 993 fzind2 n 0 N φ S D n x X A B n = x X k = 0 n ( n k) C k x D n k x
995 31 994 vtoclg N 0 N 0 N φ S D n x X A B N = x X k = 0 N ( N k) C k x D N k x
996 5 16 995 sylc φ φ S D n x X A B N = x X k = 0 N ( N k) C k x D N k x
997 12 996 mpd φ S D n x X A B N = x X k = 0 N ( N k) C k x D N k x