Metamath Proof Explorer


Theorem dvnply2

Description: Polynomials have polynomials as derivatives of all orders. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion dvnply2 S SubRing fld F Poly S N 0 D n F N Poly S

Proof

Step Hyp Ref Expression
1 fveq2 x = 0 D n F x = D n F 0
2 1 eleq1d x = 0 D n F x Poly S D n F 0 Poly S
3 2 imbi2d x = 0 S SubRing fld F Poly S D n F x Poly S S SubRing fld F Poly S D n F 0 Poly S
4 fveq2 x = n D n F x = D n F n
5 4 eleq1d x = n D n F x Poly S D n F n Poly S
6 5 imbi2d x = n S SubRing fld F Poly S D n F x Poly S S SubRing fld F Poly S D n F n Poly S
7 fveq2 x = n + 1 D n F x = D n F n + 1
8 7 eleq1d x = n + 1 D n F x Poly S D n F n + 1 Poly S
9 8 imbi2d x = n + 1 S SubRing fld F Poly S D n F x Poly S S SubRing fld F Poly S D n F n + 1 Poly S
10 fveq2 x = N D n F x = D n F N
11 10 eleq1d x = N D n F x Poly S D n F N Poly S
12 11 imbi2d x = N S SubRing fld F Poly S D n F x Poly S S SubRing fld F Poly S D n F N Poly S
13 ssid
14 cnex V
15 plyf F Poly S F :
16 15 adantl S SubRing fld F Poly S F :
17 fpmg V V F : F 𝑝𝑚
18 14 14 16 17 mp3an12i S SubRing fld F Poly S F 𝑝𝑚
19 dvn0 F 𝑝𝑚 D n F 0 = F
20 13 18 19 sylancr S SubRing fld F Poly S D n F 0 = F
21 simpr S SubRing fld F Poly S F Poly S
22 20 21 eqeltrd S SubRing fld F Poly S D n F 0 Poly S
23 dvply2g S SubRing fld D n F n Poly S D D n F n Poly S
24 23 ex S SubRing fld D n F n Poly S D D n F n Poly S
25 24 ad2antrr S SubRing fld F Poly S n 0 D n F n Poly S D D n F n Poly S
26 dvnp1 F 𝑝𝑚 n 0 D n F n + 1 = D D n F n
27 13 26 mp3an1 F 𝑝𝑚 n 0 D n F n + 1 = D D n F n
28 18 27 sylan S SubRing fld F Poly S n 0 D n F n + 1 = D D n F n
29 28 eleq1d S SubRing fld F Poly S n 0 D n F n + 1 Poly S D D n F n Poly S
30 25 29 sylibrd S SubRing fld F Poly S n 0 D n F n Poly S D n F n + 1 Poly S
31 30 expcom n 0 S SubRing fld F Poly S D n F n Poly S D n F n + 1 Poly S
32 31 a2d n 0 S SubRing fld F Poly S D n F n Poly S S SubRing fld F Poly S D n F n + 1 Poly S
33 3 6 9 12 22 32 nn0ind N 0 S SubRing fld F Poly S D n F N Poly S
34 33 impcom S SubRing fld F Poly S N 0 D n F N Poly S
35 34 3impa S SubRing fld F Poly S N 0 D n F N Poly S