Metamath Proof Explorer


Theorem dvnprod

Description: The multinomial formula for the N -th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnprod.s φ S
dvnprod.x φ X TopOpen fld 𝑡 S
dvnprod.t φ T Fin
dvnprod.h φ t T H t : X
dvnprod.n φ N 0
dvnprod.dvnh φ t T k 0 N S D n H t k : X
dvnprod.f F = x X t T H t x
dvnprod.c C = n 0 c 0 n T | t T c t = n
Assertion dvnprod φ S D n F N = x X c C N N ! t T c t ! t T S D n H t c t x

Proof

Step Hyp Ref Expression
1 dvnprod.s φ S
2 dvnprod.x φ X TopOpen fld 𝑡 S
3 dvnprod.t φ T Fin
4 dvnprod.h φ t T H t : X
5 dvnprod.n φ N 0
6 dvnprod.dvnh φ t T k 0 N S D n H t k : X
7 dvnprod.f F = x X t T H t x
8 dvnprod.c C = n 0 c 0 n T | t T c t = n
9 fveq2 u = t d u = d t
10 9 cbvsumv u r d u = t r d t
11 10 eqeq1i u r d u = m t r d t = m
12 11 rabbii d 0 m r | u r d u = m = d 0 m r | t r d t = m
13 fveq1 d = e d t = e t
14 13 sumeq2sdv d = e t r d t = t r e t
15 14 eqeq1d d = e t r d t = m t r e t = m
16 15 cbvrabv d 0 m r | t r d t = m = e 0 m r | t r e t = m
17 12 16 eqtri d 0 m r | u r d u = m = e 0 m r | t r e t = m
18 17 mpteq2i m 0 d 0 m r | u r d u = m = m 0 e 0 m r | t r e t = m
19 eqeq2 m = n t r e t = m t r e t = n
20 19 rabbidv m = n e 0 m r | t r e t = m = e 0 m r | t r e t = n
21 oveq2 m = n 0 m = 0 n
22 21 oveq1d m = n 0 m r = 0 n r
23 rabeq 0 m r = 0 n r e 0 m r | t r e t = n = e 0 n r | t r e t = n
24 22 23 syl m = n e 0 m r | t r e t = n = e 0 n r | t r e t = n
25 20 24 eqtrd m = n e 0 m r | t r e t = m = e 0 n r | t r e t = n
26 25 cbvmptv m 0 e 0 m r | t r e t = m = n 0 e 0 n r | t r e t = n
27 18 26 eqtri m 0 d 0 m r | u r d u = m = n 0 e 0 n r | t r e t = n
28 27 mpteq2i r 𝒫 T m 0 d 0 m r | u r d u = m = r 𝒫 T n 0 e 0 n r | t r e t = n
29 sumeq1 r = s t r e t = t s e t
30 29 eqeq1d r = s t r e t = n t s e t = n
31 30 rabbidv r = s e 0 n r | t r e t = n = e 0 n r | t s e t = n
32 oveq2 r = s 0 n r = 0 n s
33 rabeq 0 n r = 0 n s e 0 n r | t s e t = n = e 0 n s | t s e t = n
34 32 33 syl r = s e 0 n r | t s e t = n = e 0 n s | t s e t = n
35 31 34 eqtrd r = s e 0 n r | t r e t = n = e 0 n s | t s e t = n
36 35 mpteq2dv r = s n 0 e 0 n r | t r e t = n = n 0 e 0 n s | t s e t = n
37 36 cbvmptv r 𝒫 T n 0 e 0 n r | t r e t = n = s 𝒫 T n 0 e 0 n s | t s e t = n
38 28 37 eqtri r 𝒫 T m 0 d 0 m r | u r d u = m = s 𝒫 T n 0 e 0 n s | t s e t = n
39 fveq1 c = e c t = e t
40 39 sumeq2sdv c = e t T c t = t T e t
41 40 eqeq1d c = e t T c t = n t T e t = n
42 41 cbvrabv c 0 n T | t T c t = n = e 0 n T | t T e t = n
43 42 mpteq2i n 0 c 0 n T | t T c t = n = n 0 e 0 n T | t T e t = n
44 8 43 eqtri C = n 0 e 0 n T | t T e t = n
45 1 2 3 4 5 6 7 38 44 dvnprodlem3 φ S D n F N = x X e C N N ! t T e t ! t T S D n H t e t x
46 fveq1 e = c e t = c t
47 46 fveq2d e = c e t ! = c t !
48 47 prodeq2ad e = c t T e t ! = t T c t !
49 48 oveq2d e = c N ! t T e t ! = N ! t T c t !
50 46 fveq2d e = c S D n H t e t = S D n H t c t
51 50 fveq1d e = c S D n H t e t x = S D n H t c t x
52 51 prodeq2ad e = c t T S D n H t e t x = t T S D n H t c t x
53 49 52 oveq12d e = c N ! t T e t ! t T S D n H t e t x = N ! t T c t ! t T S D n H t c t x
54 53 cbvsumv e C N N ! t T e t ! t T S D n H t e t x = c C N N ! t T c t ! t T S D n H t c t x
55 eqid c C N N ! t T c t ! t T S D n H t c t x = c C N N ! t T c t ! t T S D n H t c t x
56 54 55 eqtri e C N N ! t T e t ! t T S D n H t e t x = c C N N ! t T c t ! t T S D n H t c t x
57 56 mpteq2i x X e C N N ! t T e t ! t T S D n H t e t x = x X c C N N ! t T c t ! t T S D n H t c t x
58 57 a1i φ x X e C N N ! t T e t ! t T S D n H t e t x = x X c C N N ! t T c t ! t T S D n H t c t x
59 45 58 eqtrd φ S D n F N = x X c C N N ! t T c t ! t T S D n H t c t x