Step |
Hyp |
Ref |
Expression |
1 |
|
dvnprod.s |
|
2 |
|
dvnprod.x |
|
3 |
|
dvnprod.t |
|
4 |
|
dvnprod.h |
|
5 |
|
dvnprod.n |
|
6 |
|
dvnprod.dvnh |
|
7 |
|
dvnprod.f |
|
8 |
|
dvnprod.c |
|
9 |
|
fveq2 |
|
10 |
9
|
cbvsumv |
|
11 |
10
|
eqeq1i |
|
12 |
11
|
rabbii |
|
13 |
|
fveq1 |
|
14 |
13
|
sumeq2sdv |
|
15 |
14
|
eqeq1d |
|
16 |
15
|
cbvrabv |
|
17 |
12 16
|
eqtri |
|
18 |
17
|
mpteq2i |
|
19 |
|
eqeq2 |
|
20 |
19
|
rabbidv |
|
21 |
|
oveq2 |
|
22 |
21
|
oveq1d |
|
23 |
|
rabeq |
|
24 |
22 23
|
syl |
|
25 |
20 24
|
eqtrd |
|
26 |
25
|
cbvmptv |
|
27 |
18 26
|
eqtri |
|
28 |
27
|
mpteq2i |
|
29 |
|
sumeq1 |
|
30 |
29
|
eqeq1d |
|
31 |
30
|
rabbidv |
|
32 |
|
oveq2 |
|
33 |
|
rabeq |
|
34 |
32 33
|
syl |
|
35 |
31 34
|
eqtrd |
|
36 |
35
|
mpteq2dv |
|
37 |
36
|
cbvmptv |
|
38 |
28 37
|
eqtri |
|
39 |
|
fveq1 |
|
40 |
39
|
sumeq2sdv |
|
41 |
40
|
eqeq1d |
|
42 |
41
|
cbvrabv |
|
43 |
42
|
mpteq2i |
|
44 |
8 43
|
eqtri |
|
45 |
1 2 3 4 5 6 7 38 44
|
dvnprodlem3 |
|
46 |
|
fveq1 |
|
47 |
46
|
fveq2d |
|
48 |
47
|
prodeq2ad |
|
49 |
48
|
oveq2d |
|
50 |
46
|
fveq2d |
|
51 |
50
|
fveq1d |
|
52 |
51
|
prodeq2ad |
|
53 |
49 52
|
oveq12d |
|
54 |
53
|
cbvsumv |
|
55 |
|
eqid |
|
56 |
54 55
|
eqtri |
|
57 |
56
|
mpteq2i |
|
58 |
57
|
a1i |
|
59 |
45 58
|
eqtrd |
|