Metamath Proof Explorer


Theorem dvnres

Description: Multiple derivative version of dvres3a . (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion dvnres S F 𝑝𝑚 N 0 dom D n F N = dom F S D n F S N = D n F N S

Proof

Step Hyp Ref Expression
1 fveq2 x = 0 D n F x = D n F 0
2 1 dmeqd x = 0 dom D n F x = dom D n F 0
3 2 eqeq1d x = 0 dom D n F x = dom F dom D n F 0 = dom F
4 fveq2 x = 0 S D n F S x = S D n F S 0
5 1 reseq1d x = 0 D n F x S = D n F 0 S
6 4 5 eqeq12d x = 0 S D n F S x = D n F x S S D n F S 0 = D n F 0 S
7 3 6 imbi12d x = 0 dom D n F x = dom F S D n F S x = D n F x S dom D n F 0 = dom F S D n F S 0 = D n F 0 S
8 7 imbi2d x = 0 S F 𝑝𝑚 dom D n F x = dom F S D n F S x = D n F x S S F 𝑝𝑚 dom D n F 0 = dom F S D n F S 0 = D n F 0 S
9 fveq2 x = n D n F x = D n F n
10 9 dmeqd x = n dom D n F x = dom D n F n
11 10 eqeq1d x = n dom D n F x = dom F dom D n F n = dom F
12 fveq2 x = n S D n F S x = S D n F S n
13 9 reseq1d x = n D n F x S = D n F n S
14 12 13 eqeq12d x = n S D n F S x = D n F x S S D n F S n = D n F n S
15 11 14 imbi12d x = n dom D n F x = dom F S D n F S x = D n F x S dom D n F n = dom F S D n F S n = D n F n S
16 15 imbi2d x = n S F 𝑝𝑚 dom D n F x = dom F S D n F S x = D n F x S S F 𝑝𝑚 dom D n F n = dom F S D n F S n = D n F n S
17 fveq2 x = n + 1 D n F x = D n F n + 1
18 17 dmeqd x = n + 1 dom D n F x = dom D n F n + 1
19 18 eqeq1d x = n + 1 dom D n F x = dom F dom D n F n + 1 = dom F
20 fveq2 x = n + 1 S D n F S x = S D n F S n + 1
21 17 reseq1d x = n + 1 D n F x S = D n F n + 1 S
22 20 21 eqeq12d x = n + 1 S D n F S x = D n F x S S D n F S n + 1 = D n F n + 1 S
23 19 22 imbi12d x = n + 1 dom D n F x = dom F S D n F S x = D n F x S dom D n F n + 1 = dom F S D n F S n + 1 = D n F n + 1 S
24 23 imbi2d x = n + 1 S F 𝑝𝑚 dom D n F x = dom F S D n F S x = D n F x S S F 𝑝𝑚 dom D n F n + 1 = dom F S D n F S n + 1 = D n F n + 1 S
25 fveq2 x = N D n F x = D n F N
26 25 dmeqd x = N dom D n F x = dom D n F N
27 26 eqeq1d x = N dom D n F x = dom F dom D n F N = dom F
28 fveq2 x = N S D n F S x = S D n F S N
29 25 reseq1d x = N D n F x S = D n F N S
30 28 29 eqeq12d x = N S D n F S x = D n F x S S D n F S N = D n F N S
31 27 30 imbi12d x = N dom D n F x = dom F S D n F S x = D n F x S dom D n F N = dom F S D n F S N = D n F N S
32 31 imbi2d x = N S F 𝑝𝑚 dom D n F x = dom F S D n F S x = D n F x S S F 𝑝𝑚 dom D n F N = dom F S D n F S N = D n F N S
33 recnprss S S
34 33 adantr S F 𝑝𝑚 S
35 pmresg S F 𝑝𝑚 F S 𝑝𝑚 S
36 dvn0 S F S 𝑝𝑚 S S D n F S 0 = F S
37 34 35 36 syl2anc S F 𝑝𝑚 S D n F S 0 = F S
38 ssidd S
39 dvn0 F 𝑝𝑚 D n F 0 = F
40 38 39 sylan S F 𝑝𝑚 D n F 0 = F
41 40 reseq1d S F 𝑝𝑚 D n F 0 S = F S
42 37 41 eqtr4d S F 𝑝𝑚 S D n F S 0 = D n F 0 S
43 42 a1d S F 𝑝𝑚 dom D n F 0 = dom F S D n F S 0 = D n F 0 S
44 cnelprrecn
45 simplr S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F F 𝑝𝑚
46 simprl S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F n 0
47 dvnbss F 𝑝𝑚 n 0 dom D n F n dom F
48 44 45 46 47 mp3an2i S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n dom F
49 simprr S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n + 1 = dom F
50 ssidd S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F
51 dvnp1 F 𝑝𝑚 n 0 D n F n + 1 = D D n F n
52 50 45 46 51 syl3anc S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F D n F n + 1 = D D n F n
53 52 dmeqd S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n + 1 = dom D n F n
54 49 53 eqtr3d S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom F = dom D n F n
55 dvnf F 𝑝𝑚 n 0 D n F n : dom D n F n
56 44 45 46 55 mp3an2i S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F D n F n : dom D n F n
57 cnex V
58 57 57 elpm2 F 𝑝𝑚 F : dom F dom F
59 58 simprbi F 𝑝𝑚 dom F
60 45 59 syl S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom F
61 48 60 sstrd S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n
62 50 56 61 dvbss S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n dom D n F n
63 54 62 eqsstrd S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom F dom D n F n
64 48 63 eqssd S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n = dom F
65 64 expr S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n = dom F
66 65 imim1d S F 𝑝𝑚 n 0 dom D n F n = dom F S D n F S n = D n F n S dom D n F n + 1 = dom F S D n F S n = D n F n S
67 oveq2 S D n F S n = D n F n S S D S D n F S n = S D D n F n S
68 34 adantr S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F S
69 35 adantr S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F F S 𝑝𝑚 S
70 dvnp1 S F S 𝑝𝑚 S n 0 S D n F S n + 1 = S D S D n F S n
71 68 69 46 70 syl3anc S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F S D n F S n + 1 = S D S D n F S n
72 52 reseq1d S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F D n F n + 1 S = D n F n S
73 simpll S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F S
74 eqid TopOpen fld = TopOpen fld
75 74 cnfldtop TopOpen fld Top
76 unicntop = TopOpen fld
77 76 ntrss2 TopOpen fld Top dom D n F n int TopOpen fld dom D n F n dom D n F n
78 75 61 77 sylancr S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F int TopOpen fld dom D n F n dom D n F n
79 74 cnfldtopon TopOpen fld TopOn
80 79 toponrestid TopOpen fld = TopOpen fld 𝑡
81 50 56 61 80 74 dvbssntr S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n int TopOpen fld dom D n F n
82 54 81 eqsstrd S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom F int TopOpen fld dom D n F n
83 48 82 sstrd S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n int TopOpen fld dom D n F n
84 78 83 eqssd S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F int TopOpen fld dom D n F n = dom D n F n
85 76 isopn3 TopOpen fld Top dom D n F n dom D n F n TopOpen fld int TopOpen fld dom D n F n = dom D n F n
86 75 61 85 sylancr S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n TopOpen fld int TopOpen fld dom D n F n = dom D n F n
87 84 86 mpbird S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n TopOpen fld
88 64 54 eqtr2d S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F dom D n F n = dom D n F n
89 74 dvres3a S D n F n : dom D n F n dom D n F n TopOpen fld dom D n F n = dom D n F n S D D n F n S = D n F n S
90 73 56 87 88 89 syl22anc S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F S D D n F n S = D n F n S
91 72 90 eqtr4d S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F D n F n + 1 S = S D D n F n S
92 71 91 eqeq12d S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F S D n F S n + 1 = D n F n + 1 S S D S D n F S n = S D D n F n S
93 67 92 syl5ibr S F 𝑝𝑚 n 0 dom D n F n + 1 = dom F S D n F S n = D n F n S S D n F S n + 1 = D n F n + 1 S
94 66 93 animpimp2impd n 0 S F 𝑝𝑚 dom D n F n = dom F S D n F S n = D n F n S S F 𝑝𝑚 dom D n F n + 1 = dom F S D n F S n + 1 = D n F n + 1 S
95 8 16 24 32 43 94 nn0ind N 0 S F 𝑝𝑚 dom D n F N = dom F S D n F S N = D n F N S
96 95 com12 S F 𝑝𝑚 N 0 dom D n F N = dom F S D n F S N = D n F N S
97 96 3impia S F 𝑝𝑚 N 0 dom D n F N = dom F S D n F S N = D n F N S
98 97 imp S F 𝑝𝑚 N 0 dom D n F N = dom F S D n F S N = D n F N S