Metamath Proof Explorer


Theorem dvntaylp

Description: The M -th derivative of the Taylor polynomial is the Taylor polynomial of the M -th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses dvntaylp.s φ S
dvntaylp.f φ F : A
dvntaylp.a φ A S
dvntaylp.m φ M 0
dvntaylp.n φ N 0
dvntaylp.b φ B dom S D n F N + M
Assertion dvntaylp φ D n N + M S Tayl F B M = N S Tayl S D n F M B

Proof

Step Hyp Ref Expression
1 dvntaylp.s φ S
2 dvntaylp.f φ F : A
3 dvntaylp.a φ A S
4 dvntaylp.m φ M 0
5 dvntaylp.n φ N 0
6 dvntaylp.b φ B dom S D n F N + M
7 nn0uz 0 = 0
8 4 7 eleqtrdi φ M 0
9 eluzfz2b M 0 M 0 M
10 8 9 sylib φ M 0 M
11 fveq2 m = 0 D n N + M S Tayl F B m = D n N + M S Tayl F B 0
12 fveq2 m = 0 S D n F m = S D n F 0
13 12 oveq2d m = 0 S Tayl S D n F m = S Tayl S D n F 0
14 oveq2 m = 0 M m = M 0
15 14 oveq2d m = 0 N + M - m = N + M - 0
16 eqidd m = 0 B = B
17 13 15 16 oveq123d m = 0 N + M - m S Tayl S D n F m B = N + M - 0 S Tayl S D n F 0 B
18 11 17 eqeq12d m = 0 D n N + M S Tayl F B m = N + M - m S Tayl S D n F m B D n N + M S Tayl F B 0 = N + M - 0 S Tayl S D n F 0 B
19 18 imbi2d m = 0 φ D n N + M S Tayl F B m = N + M - m S Tayl S D n F m B φ D n N + M S Tayl F B 0 = N + M - 0 S Tayl S D n F 0 B
20 fveq2 m = n D n N + M S Tayl F B m = D n N + M S Tayl F B n
21 fveq2 m = n S D n F m = S D n F n
22 21 oveq2d m = n S Tayl S D n F m = S Tayl S D n F n
23 oveq2 m = n M m = M n
24 23 oveq2d m = n N + M - m = N + M - n
25 eqidd m = n B = B
26 22 24 25 oveq123d m = n N + M - m S Tayl S D n F m B = N + M - n S Tayl S D n F n B
27 20 26 eqeq12d m = n D n N + M S Tayl F B m = N + M - m S Tayl S D n F m B D n N + M S Tayl F B n = N + M - n S Tayl S D n F n B
28 27 imbi2d m = n φ D n N + M S Tayl F B m = N + M - m S Tayl S D n F m B φ D n N + M S Tayl F B n = N + M - n S Tayl S D n F n B
29 fveq2 m = n + 1 D n N + M S Tayl F B m = D n N + M S Tayl F B n + 1
30 fveq2 m = n + 1 S D n F m = S D n F n + 1
31 30 oveq2d m = n + 1 S Tayl S D n F m = S Tayl S D n F n + 1
32 oveq2 m = n + 1 M m = M n + 1
33 32 oveq2d m = n + 1 N + M - m = N + M - n + 1
34 eqidd m = n + 1 B = B
35 31 33 34 oveq123d m = n + 1 N + M - m S Tayl S D n F m B = N + M - n + 1 S Tayl S D n F n + 1 B
36 29 35 eqeq12d m = n + 1 D n N + M S Tayl F B m = N + M - m S Tayl S D n F m B D n N + M S Tayl F B n + 1 = N + M - n + 1 S Tayl S D n F n + 1 B
37 36 imbi2d m = n + 1 φ D n N + M S Tayl F B m = N + M - m S Tayl S D n F m B φ D n N + M S Tayl F B n + 1 = N + M - n + 1 S Tayl S D n F n + 1 B
38 fveq2 m = M D n N + M S Tayl F B m = D n N + M S Tayl F B M
39 fveq2 m = M S D n F m = S D n F M
40 39 oveq2d m = M S Tayl S D n F m = S Tayl S D n F M
41 oveq2 m = M M m = M M
42 41 oveq2d m = M N + M - m = N + M - M
43 eqidd m = M B = B
44 40 42 43 oveq123d m = M N + M - m S Tayl S D n F m B = N + M - M S Tayl S D n F M B
45 38 44 eqeq12d m = M D n N + M S Tayl F B m = N + M - m S Tayl S D n F m B D n N + M S Tayl F B M = N + M - M S Tayl S D n F M B
46 45 imbi2d m = M φ D n N + M S Tayl F B m = N + M - m S Tayl S D n F m B φ D n N + M S Tayl F B M = N + M - M S Tayl S D n F M B
47 ssidd φ
48 mapsspm 𝑝𝑚
49 5 4 nn0addcld φ N + M 0
50 eqid N + M S Tayl F B = N + M S Tayl F B
51 1 2 3 49 6 50 taylpf φ N + M S Tayl F B :
52 cnex V
53 52 52 elmap N + M S Tayl F B N + M S Tayl F B :
54 51 53 sylibr φ N + M S Tayl F B
55 48 54 sselid φ N + M S Tayl F B 𝑝𝑚
56 dvn0 N + M S Tayl F B 𝑝𝑚 D n N + M S Tayl F B 0 = N + M S Tayl F B
57 47 55 56 syl2anc φ D n N + M S Tayl F B 0 = N + M S Tayl F B
58 recnprss S S
59 1 58 syl φ S
60 52 a1i φ V
61 elpm2r V S F : A A S F 𝑝𝑚 S
62 60 1 2 3 61 syl22anc φ F 𝑝𝑚 S
63 dvn0 S F 𝑝𝑚 S S D n F 0 = F
64 59 62 63 syl2anc φ S D n F 0 = F
65 64 oveq2d φ S Tayl S D n F 0 = S Tayl F
66 4 nn0cnd φ M
67 66 subid1d φ M 0 = M
68 67 oveq2d φ N + M - 0 = N + M
69 eqidd φ B = B
70 65 68 69 oveq123d φ N + M - 0 S Tayl S D n F 0 B = N + M S Tayl F B
71 57 70 eqtr4d φ D n N + M S Tayl F B 0 = N + M - 0 S Tayl S D n F 0 B
72 71 a1i M 0 φ D n N + M S Tayl F B 0 = N + M - 0 S Tayl S D n F 0 B
73 oveq2 D n N + M S Tayl F B n = N + M - n S Tayl S D n F n B D D n N + M S Tayl F B n = D N + M - n S Tayl S D n F n B
74 ssidd φ n 0 ..^ M
75 55 adantr φ n 0 ..^ M N + M S Tayl F B 𝑝𝑚
76 elfzouz n 0 ..^ M n 0
77 76 adantl φ n 0 ..^ M n 0
78 77 7 eleqtrrdi φ n 0 ..^ M n 0
79 dvnp1 N + M S Tayl F B 𝑝𝑚 n 0 D n N + M S Tayl F B n + 1 = D D n N + M S Tayl F B n
80 74 75 78 79 syl3anc φ n 0 ..^ M D n N + M S Tayl F B n + 1 = D D n N + M S Tayl F B n
81 1 adantr φ n 0 ..^ M S
82 62 adantr φ n 0 ..^ M F 𝑝𝑚 S
83 dvnf S F 𝑝𝑚 S n 0 S D n F n : dom S D n F n
84 81 82 78 83 syl3anc φ n 0 ..^ M S D n F n : dom S D n F n
85 dvnbss S F 𝑝𝑚 S n 0 dom S D n F n dom F
86 81 82 78 85 syl3anc φ n 0 ..^ M dom S D n F n dom F
87 2 fdmd φ dom F = A
88 87 adantr φ n 0 ..^ M dom F = A
89 86 88 sseqtrd φ n 0 ..^ M dom S D n F n A
90 3 adantr φ n 0 ..^ M A S
91 89 90 sstrd φ n 0 ..^ M dom S D n F n S
92 5 adantr φ n 0 ..^ M N 0
93 fzofzp1 n 0 ..^ M n + 1 0 M
94 93 adantl φ n 0 ..^ M n + 1 0 M
95 fznn0sub n + 1 0 M M n + 1 0
96 94 95 syl φ n 0 ..^ M M n + 1 0
97 92 96 nn0addcld φ n 0 ..^ M N + M - n + 1 0
98 6 adantr φ n 0 ..^ M B dom S D n F N + M
99 elfzofz n 0 ..^ M n 0 M
100 99 adantl φ n 0 ..^ M n 0 M
101 fznn0sub n 0 M M n 0
102 100 101 syl φ n 0 ..^ M M n 0
103 92 102 nn0addcld φ n 0 ..^ M N + M - n 0
104 dvnadd S F 𝑝𝑚 S n 0 N + M - n 0 S D n S D n F n N + M - n = S D n F n + N + M n
105 81 82 78 103 104 syl22anc φ n 0 ..^ M S D n S D n F n N + M - n = S D n F n + N + M n
106 5 nn0cnd φ N
107 106 adantr φ n 0 ..^ M N
108 96 nn0cnd φ n 0 ..^ M M n + 1
109 1cnd φ n 0 ..^ M 1
110 107 108 109 addassd φ n 0 ..^ M N + M n + 1 + 1 = N + M n + 1 + 1
111 66 adantr φ n 0 ..^ M M
112 78 nn0cnd φ n 0 ..^ M n
113 111 112 109 nppcan2d φ n 0 ..^ M M - n + 1 + 1 = M n
114 113 oveq2d φ n 0 ..^ M N + M n + 1 + 1 = N + M - n
115 110 114 eqtrd φ n 0 ..^ M N + M n + 1 + 1 = N + M - n
116 115 fveq2d φ n 0 ..^ M S D n S D n F n N + M n + 1 + 1 = S D n S D n F n N + M - n
117 112 111 pncan3d φ n 0 ..^ M n + M - n = M
118 117 oveq2d φ n 0 ..^ M N + n + M n = N + M
119 111 112 subcld φ n 0 ..^ M M n
120 107 112 119 add12d φ n 0 ..^ M N + n + M n = n + N + M n
121 118 120 eqtr3d φ n 0 ..^ M N + M = n + N + M n
122 121 fveq2d φ n 0 ..^ M S D n F N + M = S D n F n + N + M n
123 105 116 122 3eqtr4d φ n 0 ..^ M S D n S D n F n N + M n + 1 + 1 = S D n F N + M
124 123 dmeqd φ n 0 ..^ M dom S D n S D n F n N + M n + 1 + 1 = dom S D n F N + M
125 98 124 eleqtrrd φ n 0 ..^ M B dom S D n S D n F n N + M n + 1 + 1
126 81 84 91 97 125 dvtaylp φ n 0 ..^ M D N + M n + 1 + 1 S Tayl S D n F n B = N + M - n + 1 S Tayl S D n F n S B
127 115 oveq1d φ n 0 ..^ M N + M n + 1 + 1 S Tayl S D n F n B = N + M - n S Tayl S D n F n B
128 127 oveq2d φ n 0 ..^ M D N + M n + 1 + 1 S Tayl S D n F n B = D N + M - n S Tayl S D n F n B
129 59 adantr φ n 0 ..^ M S
130 dvnp1 S F 𝑝𝑚 S n 0 S D n F n + 1 = S D S D n F n
131 129 82 78 130 syl3anc φ n 0 ..^ M S D n F n + 1 = S D S D n F n
132 131 oveq2d φ n 0 ..^ M S Tayl S D n F n + 1 = S Tayl S D n F n S
133 132 eqcomd φ n 0 ..^ M S Tayl S D n F n S = S Tayl S D n F n + 1
134 133 oveqd φ n 0 ..^ M N + M - n + 1 S Tayl S D n F n S B = N + M - n + 1 S Tayl S D n F n + 1 B
135 126 128 134 3eqtr3rd φ n 0 ..^ M N + M - n + 1 S Tayl S D n F n + 1 B = D N + M - n S Tayl S D n F n B
136 80 135 eqeq12d φ n 0 ..^ M D n N + M S Tayl F B n + 1 = N + M - n + 1 S Tayl S D n F n + 1 B D D n N + M S Tayl F B n = D N + M - n S Tayl S D n F n B
137 73 136 syl5ibr φ n 0 ..^ M D n N + M S Tayl F B n = N + M - n S Tayl S D n F n B D n N + M S Tayl F B n + 1 = N + M - n + 1 S Tayl S D n F n + 1 B
138 137 expcom n 0 ..^ M φ D n N + M S Tayl F B n = N + M - n S Tayl S D n F n B D n N + M S Tayl F B n + 1 = N + M - n + 1 S Tayl S D n F n + 1 B
139 138 a2d n 0 ..^ M φ D n N + M S Tayl F B n = N + M - n S Tayl S D n F n B φ D n N + M S Tayl F B n + 1 = N + M - n + 1 S Tayl S D n F n + 1 B
140 19 28 37 46 72 139 fzind2 M 0 M φ D n N + M S Tayl F B M = N + M - M S Tayl S D n F M B
141 10 140 mpcom φ D n N + M S Tayl F B M = N + M - M S Tayl S D n F M B
142 66 subidd φ M M = 0
143 142 oveq2d φ N + M - M = N + 0
144 106 addid1d φ N + 0 = N
145 143 144 eqtrd φ N + M - M = N
146 145 oveq1d φ N + M - M S Tayl S D n F M B = N S Tayl S D n F M B
147 141 146 eqtrd φ D n N + M S Tayl F B M = N S Tayl S D n F M B