Metamath Proof Explorer


Theorem dvply1

Description: Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvply1.f φ F = z k = 0 N A k z k
dvply1.g φ G = z k = 0 N 1 B k z k
dvply1.a φ A : 0
dvply1.b B = k 0 k + 1 A k + 1
dvply1.n φ N 0
Assertion dvply1 φ D F = G

Proof

Step Hyp Ref Expression
1 dvply1.f φ F = z k = 0 N A k z k
2 dvply1.g φ G = z k = 0 N 1 B k z k
3 dvply1.a φ A : 0
4 dvply1.b B = k 0 k + 1 A k + 1
5 dvply1.n φ N 0
6 1 oveq2d φ D F = dz k = 0 N A k z k d z
7 eqid TopOpen fld = TopOpen fld
8 7 cnfldtopon TopOpen fld TopOn
9 8 toponrestid TopOpen fld = TopOpen fld 𝑡
10 cnelprrecn
11 10 a1i φ
12 7 cnfldtop TopOpen fld Top
13 unicntop = TopOpen fld
14 13 topopn TopOpen fld Top TopOpen fld
15 12 14 mp1i φ TopOpen fld
16 fzfid φ 0 N Fin
17 elfznn0 k 0 N k 0
18 ffvelrn A : 0 k 0 A k
19 3 17 18 syl2an φ k 0 N A k
20 19 adantr φ k 0 N z A k
21 simpr φ k 0 N z z
22 17 ad2antlr φ k 0 N z k 0
23 21 22 expcld φ k 0 N z z k
24 20 23 mulcld φ k 0 N z A k z k
25 24 3impa φ k 0 N z A k z k
26 19 3adant3 φ k 0 N z A k
27 0cnd φ k 0 N z k = 0 0
28 simpl2 φ k 0 N z ¬ k = 0 k 0 N
29 28 17 syl φ k 0 N z ¬ k = 0 k 0
30 29 nn0cnd φ k 0 N z ¬ k = 0 k
31 simpl3 φ k 0 N z ¬ k = 0 z
32 simpr φ k 0 N z ¬ k = 0 ¬ k = 0
33 elnn0 k 0 k k = 0
34 29 33 sylib φ k 0 N z ¬ k = 0 k k = 0
35 orel2 ¬ k = 0 k k = 0 k
36 32 34 35 sylc φ k 0 N z ¬ k = 0 k
37 nnm1nn0 k k 1 0
38 36 37 syl φ k 0 N z ¬ k = 0 k 1 0
39 31 38 expcld φ k 0 N z ¬ k = 0 z k 1
40 30 39 mulcld φ k 0 N z ¬ k = 0 k z k 1
41 27 40 ifclda φ k 0 N z if k = 0 0 k z k 1
42 26 41 mulcld φ k 0 N z A k if k = 0 0 k z k 1
43 10 a1i φ k 0 N
44 c0ex 0 V
45 ovex k z k 1 V
46 44 45 ifex if k = 0 0 k z k 1 V
47 46 a1i φ k 0 N z if k = 0 0 k z k 1 V
48 17 adantl φ k 0 N k 0
49 dvexp2 k 0 dz z k d z = z if k = 0 0 k z k 1
50 48 49 syl φ k 0 N dz z k d z = z if k = 0 0 k z k 1
51 43 23 47 50 19 dvmptcmul φ k 0 N dz A k z k d z = z A k if k = 0 0 k z k 1
52 9 7 11 15 16 25 42 51 dvmptfsum φ dz k = 0 N A k z k d z = z k = 0 N A k if k = 0 0 k z k 1
53 elfznn k 1 N k
54 53 nnne0d k 1 N k 0
55 54 neneqd k 1 N ¬ k = 0
56 55 adantl φ z k 1 N ¬ k = 0
57 56 iffalsed φ z k 1 N if k = 0 0 k z k 1 = k z k 1
58 57 oveq2d φ z k 1 N A k if k = 0 0 k z k 1 = A k k z k 1
59 58 sumeq2dv φ z k = 1 N A k if k = 0 0 k z k 1 = k = 1 N A k k z k 1
60 1eluzge0 1 0
61 fzss1 1 0 1 N 0 N
62 60 61 mp1i φ z 1 N 0 N
63 3 adantr φ z A : 0
64 53 nnnn0d k 1 N k 0
65 63 64 18 syl2an φ z k 1 N A k
66 54 adantl φ z k 1 N k 0
67 66 neneqd φ z k 1 N ¬ k = 0
68 67 iffalsed φ z k 1 N if k = 0 0 k z k 1 = k z k 1
69 64 adantl φ z k 1 N k 0
70 69 nn0cnd φ z k 1 N k
71 simplr φ z k 1 N z
72 53 37 syl k 1 N k 1 0
73 72 adantl φ z k 1 N k 1 0
74 71 73 expcld φ z k 1 N z k 1
75 70 74 mulcld φ z k 1 N k z k 1
76 68 75 eqeltrd φ z k 1 N if k = 0 0 k z k 1
77 65 76 mulcld φ z k 1 N A k if k = 0 0 k z k 1
78 eldifn k 0 N 1 N ¬ k 1 N
79 0p1e1 0 + 1 = 1
80 79 oveq1i 0 + 1 N = 1 N
81 80 eleq2i k 0 + 1 N k 1 N
82 78 81 sylnibr k 0 N 1 N ¬ k 0 + 1 N
83 82 adantl φ z k 0 N 1 N ¬ k 0 + 1 N
84 eldifi k 0 N 1 N k 0 N
85 84 adantl φ z k 0 N 1 N k 0 N
86 nn0uz 0 = 0
87 5 86 eleqtrdi φ N 0
88 87 ad2antrr φ z k 0 N 1 N N 0
89 elfzp12 N 0 k 0 N k = 0 k 0 + 1 N
90 88 89 syl φ z k 0 N 1 N k 0 N k = 0 k 0 + 1 N
91 85 90 mpbid φ z k 0 N 1 N k = 0 k 0 + 1 N
92 orel2 ¬ k 0 + 1 N k = 0 k 0 + 1 N k = 0
93 83 91 92 sylc φ z k 0 N 1 N k = 0
94 93 iftrued φ z k 0 N 1 N if k = 0 0 k z k 1 = 0
95 94 oveq2d φ z k 0 N 1 N A k if k = 0 0 k z k 1 = A k 0
96 63 17 18 syl2an φ z k 0 N A k
97 96 mul01d φ z k 0 N A k 0 = 0
98 84 97 sylan2 φ z k 0 N 1 N A k 0 = 0
99 95 98 eqtrd φ z k 0 N 1 N A k if k = 0 0 k z k 1 = 0
100 fzfid φ z 0 N Fin
101 62 77 99 100 fsumss φ z k = 1 N A k if k = 0 0 k z k 1 = k = 0 N A k if k = 0 0 k z k 1
102 elfznn0 j 0 N 1 j 0
103 102 adantl φ z j 0 N 1 j 0
104 103 nn0cnd φ z j 0 N 1 j
105 ax-1cn 1
106 pncan j 1 j + 1 - 1 = j
107 104 105 106 sylancl φ z j 0 N 1 j + 1 - 1 = j
108 107 oveq2d φ z j 0 N 1 z j + 1 - 1 = z j
109 108 oveq2d φ z j 0 N 1 j + 1 z j + 1 - 1 = j + 1 z j
110 109 oveq2d φ z j 0 N 1 A j + 1 j + 1 z j + 1 - 1 = A j + 1 j + 1 z j
111 3 ad2antrr φ z j 0 N 1 A : 0
112 peano2nn0 j 0 j + 1 0
113 102 112 syl j 0 N 1 j + 1 0
114 113 adantl φ z j 0 N 1 j + 1 0
115 111 114 ffvelrnd φ z j 0 N 1 A j + 1
116 114 nn0cnd φ z j 0 N 1 j + 1
117 simplr φ z j 0 N 1 z
118 117 103 expcld φ z j 0 N 1 z j
119 115 116 118 mulassd φ z j 0 N 1 A j + 1 j + 1 z j = A j + 1 j + 1 z j
120 115 116 mulcomd φ z j 0 N 1 A j + 1 j + 1 = j + 1 A j + 1
121 120 oveq1d φ z j 0 N 1 A j + 1 j + 1 z j = j + 1 A j + 1 z j
122 110 119 121 3eqtr2d φ z j 0 N 1 A j + 1 j + 1 z j + 1 - 1 = j + 1 A j + 1 z j
123 122 sumeq2dv φ z j = 0 N 1 A j + 1 j + 1 z j + 1 - 1 = j = 0 N 1 j + 1 A j + 1 z j
124 1m1e0 1 1 = 0
125 124 oveq1i 1 1 N 1 = 0 N 1
126 125 sumeq1i j = 1 1 N 1 A j + 1 j + 1 z j + 1 - 1 = j = 0 N 1 A j + 1 j + 1 z j + 1 - 1
127 oveq1 k = j k + 1 = j + 1
128 fvoveq1 k = j A k + 1 = A j + 1
129 127 128 oveq12d k = j k + 1 A k + 1 = j + 1 A j + 1
130 oveq2 k = j z k = z j
131 129 130 oveq12d k = j k + 1 A k + 1 z k = j + 1 A j + 1 z j
132 131 cbvsumv k = 0 N 1 k + 1 A k + 1 z k = j = 0 N 1 j + 1 A j + 1 z j
133 123 126 132 3eqtr4g φ z j = 1 1 N 1 A j + 1 j + 1 z j + 1 - 1 = k = 0 N 1 k + 1 A k + 1 z k
134 1zzd φ z 1
135 5 adantr φ z N 0
136 135 nn0zd φ z N
137 65 75 mulcld φ z k 1 N A k k z k 1
138 fveq2 k = j + 1 A k = A j + 1
139 id k = j + 1 k = j + 1
140 oveq1 k = j + 1 k 1 = j + 1 - 1
141 140 oveq2d k = j + 1 z k 1 = z j + 1 - 1
142 139 141 oveq12d k = j + 1 k z k 1 = j + 1 z j + 1 - 1
143 138 142 oveq12d k = j + 1 A k k z k 1 = A j + 1 j + 1 z j + 1 - 1
144 134 134 136 137 143 fsumshftm φ z k = 1 N A k k z k 1 = j = 1 1 N 1 A j + 1 j + 1 z j + 1 - 1
145 elfznn0 k 0 N 1 k 0
146 145 adantl φ z k 0 N 1 k 0
147 ovex k + 1 A k + 1 V
148 4 fvmpt2 k 0 k + 1 A k + 1 V B k = k + 1 A k + 1
149 146 147 148 sylancl φ z k 0 N 1 B k = k + 1 A k + 1
150 149 oveq1d φ z k 0 N 1 B k z k = k + 1 A k + 1 z k
151 150 sumeq2dv φ z k = 0 N 1 B k z k = k = 0 N 1 k + 1 A k + 1 z k
152 133 144 151 3eqtr4d φ z k = 1 N A k k z k 1 = k = 0 N 1 B k z k
153 59 101 152 3eqtr3d φ z k = 0 N A k if k = 0 0 k z k 1 = k = 0 N 1 B k z k
154 153 mpteq2dva φ z k = 0 N A k if k = 0 0 k z k 1 = z k = 0 N 1 B k z k
155 154 2 eqtr4d φ z k = 0 N A k if k = 0 0 k z k 1 = G
156 6 52 155 3eqtrd φ D F = G