Step |
Hyp |
Ref |
Expression |
1 |
|
dvply1.f |
|
2 |
|
dvply1.g |
|
3 |
|
dvply1.a |
|
4 |
|
dvply1.b |
|
5 |
|
dvply1.n |
|
6 |
1
|
oveq2d |
|
7 |
|
eqid |
|
8 |
7
|
cnfldtopon |
|
9 |
8
|
toponrestid |
|
10 |
|
cnelprrecn |
|
11 |
10
|
a1i |
|
12 |
7
|
cnfldtop |
|
13 |
|
unicntop |
|
14 |
13
|
topopn |
|
15 |
12 14
|
mp1i |
|
16 |
|
fzfid |
|
17 |
|
elfznn0 |
|
18 |
|
ffvelrn |
|
19 |
3 17 18
|
syl2an |
|
20 |
19
|
adantr |
|
21 |
|
simpr |
|
22 |
17
|
ad2antlr |
|
23 |
21 22
|
expcld |
|
24 |
20 23
|
mulcld |
|
25 |
24
|
3impa |
|
26 |
19
|
3adant3 |
|
27 |
|
0cnd |
|
28 |
|
simpl2 |
|
29 |
28 17
|
syl |
|
30 |
29
|
nn0cnd |
|
31 |
|
simpl3 |
|
32 |
|
simpr |
|
33 |
|
elnn0 |
|
34 |
29 33
|
sylib |
|
35 |
|
orel2 |
|
36 |
32 34 35
|
sylc |
|
37 |
|
nnm1nn0 |
|
38 |
36 37
|
syl |
|
39 |
31 38
|
expcld |
|
40 |
30 39
|
mulcld |
|
41 |
27 40
|
ifclda |
|
42 |
26 41
|
mulcld |
|
43 |
10
|
a1i |
|
44 |
|
c0ex |
|
45 |
|
ovex |
|
46 |
44 45
|
ifex |
|
47 |
46
|
a1i |
|
48 |
17
|
adantl |
|
49 |
|
dvexp2 |
|
50 |
48 49
|
syl |
|
51 |
43 23 47 50 19
|
dvmptcmul |
|
52 |
9 7 11 15 16 25 42 51
|
dvmptfsum |
|
53 |
|
elfznn |
|
54 |
53
|
nnne0d |
|
55 |
54
|
neneqd |
|
56 |
55
|
adantl |
|
57 |
56
|
iffalsed |
|
58 |
57
|
oveq2d |
|
59 |
58
|
sumeq2dv |
|
60 |
|
1eluzge0 |
|
61 |
|
fzss1 |
|
62 |
60 61
|
mp1i |
|
63 |
3
|
adantr |
|
64 |
53
|
nnnn0d |
|
65 |
63 64 18
|
syl2an |
|
66 |
54
|
adantl |
|
67 |
66
|
neneqd |
|
68 |
67
|
iffalsed |
|
69 |
64
|
adantl |
|
70 |
69
|
nn0cnd |
|
71 |
|
simplr |
|
72 |
53 37
|
syl |
|
73 |
72
|
adantl |
|
74 |
71 73
|
expcld |
|
75 |
70 74
|
mulcld |
|
76 |
68 75
|
eqeltrd |
|
77 |
65 76
|
mulcld |
|
78 |
|
eldifn |
|
79 |
|
0p1e1 |
|
80 |
79
|
oveq1i |
|
81 |
80
|
eleq2i |
|
82 |
78 81
|
sylnibr |
|
83 |
82
|
adantl |
|
84 |
|
eldifi |
|
85 |
84
|
adantl |
|
86 |
|
nn0uz |
|
87 |
5 86
|
eleqtrdi |
|
88 |
87
|
ad2antrr |
|
89 |
|
elfzp12 |
|
90 |
88 89
|
syl |
|
91 |
85 90
|
mpbid |
|
92 |
|
orel2 |
|
93 |
83 91 92
|
sylc |
|
94 |
93
|
iftrued |
|
95 |
94
|
oveq2d |
|
96 |
63 17 18
|
syl2an |
|
97 |
96
|
mul01d |
|
98 |
84 97
|
sylan2 |
|
99 |
95 98
|
eqtrd |
|
100 |
|
fzfid |
|
101 |
62 77 99 100
|
fsumss |
|
102 |
|
elfznn0 |
|
103 |
102
|
adantl |
|
104 |
103
|
nn0cnd |
|
105 |
|
ax-1cn |
|
106 |
|
pncan |
|
107 |
104 105 106
|
sylancl |
|
108 |
107
|
oveq2d |
|
109 |
108
|
oveq2d |
|
110 |
109
|
oveq2d |
|
111 |
3
|
ad2antrr |
|
112 |
|
peano2nn0 |
|
113 |
102 112
|
syl |
|
114 |
113
|
adantl |
|
115 |
111 114
|
ffvelrnd |
|
116 |
114
|
nn0cnd |
|
117 |
|
simplr |
|
118 |
117 103
|
expcld |
|
119 |
115 116 118
|
mulassd |
|
120 |
115 116
|
mulcomd |
|
121 |
120
|
oveq1d |
|
122 |
110 119 121
|
3eqtr2d |
|
123 |
122
|
sumeq2dv |
|
124 |
|
1m1e0 |
|
125 |
124
|
oveq1i |
|
126 |
125
|
sumeq1i |
|
127 |
|
oveq1 |
|
128 |
|
fvoveq1 |
|
129 |
127 128
|
oveq12d |
|
130 |
|
oveq2 |
|
131 |
129 130
|
oveq12d |
|
132 |
131
|
cbvsumv |
|
133 |
123 126 132
|
3eqtr4g |
|
134 |
|
1zzd |
|
135 |
5
|
adantr |
|
136 |
135
|
nn0zd |
|
137 |
65 75
|
mulcld |
|
138 |
|
fveq2 |
|
139 |
|
id |
|
140 |
|
oveq1 |
|
141 |
140
|
oveq2d |
|
142 |
139 141
|
oveq12d |
|
143 |
138 142
|
oveq12d |
|
144 |
134 134 136 137 143
|
fsumshftm |
|
145 |
|
elfznn0 |
|
146 |
145
|
adantl |
|
147 |
|
ovex |
|
148 |
4
|
fvmpt2 |
|
149 |
146 147 148
|
sylancl |
|
150 |
149
|
oveq1d |
|
151 |
150
|
sumeq2dv |
|
152 |
133 144 151
|
3eqtr4d |
|
153 |
59 101 152
|
3eqtr3d |
|
154 |
153
|
mpteq2dva |
|
155 |
154 2
|
eqtr4d |
|
156 |
6 52 155
|
3eqtrd |
|