Metamath Proof Explorer


Theorem dvply2

Description: The derivative of a polynomial is a polynomial. (Contributed by Stefan O'Rear, 14-Nov-2014) (Proof shortened by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion dvply2 F Poly S D F Poly

Proof

Step Hyp Ref Expression
1 cnring fld Ring
2 cnfldbas = Base fld
3 2 subrgid fld Ring SubRing fld
4 1 3 ax-mp SubRing fld
5 plyssc Poly S Poly
6 5 sseli F Poly S F Poly
7 dvply2g SubRing fld F Poly D F Poly
8 4 6 7 sylancr F Poly S D F Poly