Step |
Hyp |
Ref |
Expression |
1 |
|
plyf |
|
2 |
1
|
adantl |
|
3 |
2
|
feqmptd |
|
4 |
|
simplr |
|
5 |
|
dgrcl |
|
6 |
5
|
adantl |
|
7 |
6
|
nn0zd |
|
8 |
7
|
adantr |
|
9 |
|
uzid |
|
10 |
|
peano2uz |
|
11 |
8 9 10
|
3syl |
|
12 |
|
simpr |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14
|
coeid3 |
|
16 |
4 11 12 15
|
syl3anc |
|
17 |
16
|
mpteq2dva |
|
18 |
3 17
|
eqtrd |
|
19 |
6
|
nn0cnd |
|
20 |
|
ax-1cn |
|
21 |
|
pncan |
|
22 |
19 20 21
|
sylancl |
|
23 |
22
|
eqcomd |
|
24 |
23
|
oveq2d |
|
25 |
24
|
sumeq1d |
|
26 |
25
|
mpteq2dv |
|
27 |
13
|
coef3 |
|
28 |
27
|
adantl |
|
29 |
|
oveq1 |
|
30 |
|
fvoveq1 |
|
31 |
29 30
|
oveq12d |
|
32 |
31
|
cbvmptv |
|
33 |
|
peano2nn0 |
|
34 |
6 33
|
syl |
|
35 |
18 26 28 32 34
|
dvply1 |
|
36 |
|
cnfldbas |
|
37 |
36
|
subrgss |
|
38 |
37
|
adantr |
|
39 |
|
elfznn0 |
|
40 |
|
simpll |
|
41 |
|
zsssubrg |
|
42 |
41
|
ad2antrr |
|
43 |
|
peano2nn0 |
|
44 |
43
|
adantl |
|
45 |
44
|
nn0zd |
|
46 |
42 45
|
sseldd |
|
47 |
|
simplr |
|
48 |
|
subrgsubg |
|
49 |
|
cnfld0 |
|
50 |
49
|
subg0cl |
|
51 |
48 50
|
syl |
|
52 |
51
|
ad2antrr |
|
53 |
13
|
coef2 |
|
54 |
47 52 53
|
syl2anc |
|
55 |
54 44
|
ffvelcdmd |
|
56 |
|
mpocnfldmul |
|
57 |
56
|
subrgmcl |
|
58 |
37
|
a1d |
|
59 |
|
ssel |
|
60 |
59
|
a1i |
|
61 |
58 60
|
syld |
|
62 |
61
|
com23 |
|
63 |
62
|
3imp |
|
64 |
37
|
a1d |
|
65 |
|
ssel |
|
66 |
65
|
a1i |
|
67 |
64 66
|
syld |
|
68 |
67
|
3imp |
|
69 |
63 68
|
jca |
|
70 |
|
ovmpot |
|
71 |
69 70
|
syl |
|
72 |
71
|
eleq1d |
|
73 |
57 72
|
mpbid |
|
74 |
40 46 55 73
|
syl3anc |
|
75 |
74
|
fmpttd |
|
76 |
75
|
ffvelcdmda |
|
77 |
39 76
|
sylan2 |
|
78 |
38 6 77
|
elplyd |
|
79 |
35 78
|
eqeltrd |
|