Metamath Proof Explorer


Theorem dvr1

Description: A cancellation law for division. ( div1 analog.) (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses dvr1.b B = Base R
dvr1.d × ˙ = / r R
dvr1.o 1 ˙ = 1 R
Assertion dvr1 R Ring X B X × ˙ 1 ˙ = X

Proof

Step Hyp Ref Expression
1 dvr1.b B = Base R
2 dvr1.d × ˙ = / r R
3 dvr1.o 1 ˙ = 1 R
4 id X B X B
5 eqid Unit R = Unit R
6 5 3 1unit R Ring 1 ˙ Unit R
7 eqid R = R
8 eqid inv r R = inv r R
9 1 7 5 8 2 dvrval X B 1 ˙ Unit R X × ˙ 1 ˙ = X R inv r R 1 ˙
10 4 6 9 syl2anr R Ring X B X × ˙ 1 ˙ = X R inv r R 1 ˙
11 8 3 1rinv R Ring inv r R 1 ˙ = 1 ˙
12 11 adantr R Ring X B inv r R 1 ˙ = 1 ˙
13 12 oveq2d R Ring X B X R inv r R 1 ˙ = X R 1 ˙
14 1 7 3 ringridm R Ring X B X R 1 ˙ = X
15 10 13 14 3eqtrd R Ring X B X × ˙ 1 ˙ = X