Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
dvrcl
Next ⟩
unitdvcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvrcl
Description:
Closure of division operation.
(Contributed by
Mario Carneiro
, 2-Jul-2014)
Ref
Expression
Hypotheses
dvrcl.b
⊢
B
=
Base
R
dvrcl.o
⊢
U
=
Unit
⁡
R
dvrcl.d
⊢
×
˙
=
/
r
⁡
R
Assertion
dvrcl
⊢
R
∈
Ring
∧
X
∈
B
∧
Y
∈
U
→
X
×
˙
Y
∈
B
Proof
Step
Hyp
Ref
Expression
1
dvrcl.b
⊢
B
=
Base
R
2
dvrcl.o
⊢
U
=
Unit
⁡
R
3
dvrcl.d
⊢
×
˙
=
/
r
⁡
R
4
eqid
⊢
⋅
R
=
⋅
R
5
eqid
⊢
inv
r
⁡
R
=
inv
r
⁡
R
6
1
4
2
5
3
dvrval
⊢
X
∈
B
∧
Y
∈
U
→
X
×
˙
Y
=
X
⋅
R
inv
r
⁡
R
⁡
Y
7
6
3adant1
⊢
R
∈
Ring
∧
X
∈
B
∧
Y
∈
U
→
X
×
˙
Y
=
X
⋅
R
inv
r
⁡
R
⁡
Y
8
2
5
1
ringinvcl
⊢
R
∈
Ring
∧
Y
∈
U
→
inv
r
⁡
R
⁡
Y
∈
B
9
8
3adant2
⊢
R
∈
Ring
∧
X
∈
B
∧
Y
∈
U
→
inv
r
⁡
R
⁡
Y
∈
B
10
1
4
ringcl
⊢
R
∈
Ring
∧
X
∈
B
∧
inv
r
⁡
R
⁡
Y
∈
B
→
X
⋅
R
inv
r
⁡
R
⁡
Y
∈
B
11
9
10
syld3an3
⊢
R
∈
Ring
∧
X
∈
B
∧
Y
∈
U
→
X
⋅
R
inv
r
⁡
R
⁡
Y
∈
B
12
7
11
eqeltrd
⊢
R
∈
Ring
∧
X
∈
B
∧
Y
∈
U
→
X
×
˙
Y
∈
B