Metamath Proof Explorer


Theorem dvrcl

Description: Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses dvrcl.b B = Base R
dvrcl.o U = Unit R
dvrcl.d × ˙ = / r R
Assertion dvrcl R Ring X B Y U X × ˙ Y B

Proof

Step Hyp Ref Expression
1 dvrcl.b B = Base R
2 dvrcl.o U = Unit R
3 dvrcl.d × ˙ = / r R
4 eqid R = R
5 eqid inv r R = inv r R
6 1 4 2 5 3 dvrval X B Y U X × ˙ Y = X R inv r R Y
7 6 3adant1 R Ring X B Y U X × ˙ Y = X R inv r R Y
8 2 5 1 ringinvcl R Ring Y U inv r R Y B
9 8 3adant2 R Ring X B Y U inv r R Y B
10 1 4 ringcl R Ring X B inv r R Y B X R inv r R Y B
11 9 10 syld3an3 R Ring X B Y U X R inv r R Y B
12 7 11 eqeltrd R Ring X B Y U X × ˙ Y B