Metamath Proof Explorer


Theorem dvrcn

Description: The division function is continuous in a topological field. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses dvrcn.j J = TopOpen R
dvrcn.d × ˙ = / r R
dvrcn.u U = Unit R
Assertion dvrcn R TopDRing × ˙ J × t J 𝑡 U Cn J

Proof

Step Hyp Ref Expression
1 dvrcn.j J = TopOpen R
2 dvrcn.d × ˙ = / r R
3 dvrcn.u U = Unit R
4 eqid Base R = Base R
5 eqid R = R
6 eqid inv r R = inv r R
7 4 5 3 6 2 dvrfval × ˙ = x Base R , y U x R inv r R y
8 tdrgtrg R TopDRing R TopRing
9 tdrgtps R TopDRing R TopSp
10 4 1 istps R TopSp J TopOn Base R
11 9 10 sylib R TopDRing J TopOn Base R
12 4 3 unitss U Base R
13 resttopon J TopOn Base R U Base R J 𝑡 U TopOn U
14 11 12 13 sylancl R TopDRing J 𝑡 U TopOn U
15 11 14 cnmpt1st R TopDRing x Base R , y U x J × t J 𝑡 U Cn J
16 11 14 cnmpt2nd R TopDRing x Base R , y U y J × t J 𝑡 U Cn J 𝑡 U
17 1 6 3 invrcn R TopDRing inv r R J 𝑡 U Cn J
18 11 14 16 17 cnmpt21f R TopDRing x Base R , y U inv r R y J × t J 𝑡 U Cn J
19 1 5 8 11 14 15 18 cnmpt2mulr R TopDRing x Base R , y U x R inv r R y J × t J 𝑡 U Cn J
20 7 19 eqeltrid R TopDRing × ˙ J × t J 𝑡 U Cn J