Step |
Hyp |
Ref |
Expression |
1 |
|
dvfcn |
|
2 |
|
ssidd |
|
3 |
|
eldifsn |
|
4 |
|
divcl |
|
5 |
4
|
3expb |
|
6 |
3 5
|
sylan2b |
|
7 |
6
|
fmpttd |
|
8 |
|
difssd |
|
9 |
2 7 8
|
dvbss |
|
10 |
|
simpr |
|
11 |
|
eqid |
|
12 |
11
|
cnfldtop |
|
13 |
11
|
cnfldhaus |
|
14 |
|
0cn |
|
15 |
|
unicntop |
|
16 |
15
|
sncld |
|
17 |
13 14 16
|
mp2an |
|
18 |
15
|
cldopn |
|
19 |
17 18
|
ax-mp |
|
20 |
|
isopn3i |
|
21 |
12 19 20
|
mp2an |
|
22 |
10 21
|
eleqtrrdi |
|
23 |
|
eldifi |
|
24 |
23
|
adantl |
|
25 |
24
|
sqvald |
|
26 |
25
|
oveq2d |
|
27 |
|
simpl |
|
28 |
|
eldifsni |
|
29 |
28
|
adantl |
|
30 |
27 24 24 29 29
|
divdiv1d |
|
31 |
26 30
|
eqtr4d |
|
32 |
31
|
negeqd |
|
33 |
27 24 29
|
divcld |
|
34 |
33 24 29
|
divnegd |
|
35 |
32 34
|
eqtrd |
|
36 |
33
|
negcld |
|
37 |
|
eqid |
|
38 |
37
|
cdivcncf |
|
39 |
36 38
|
syl |
|
40 |
|
oveq2 |
|
41 |
39 10 40
|
cnmptlimc |
|
42 |
35 41
|
eqeltrd |
|
43 |
|
cncff |
|
44 |
39 43
|
syl |
|
45 |
44
|
limcdif |
|
46 |
|
eldifi |
|
47 |
46
|
adantl |
|
48 |
47
|
eldifad |
|
49 |
23
|
ad2antlr |
|
50 |
48 49
|
subcld |
|
51 |
33
|
adantr |
|
52 |
|
eldifsni |
|
53 |
47 52
|
syl |
|
54 |
51 48 53
|
divcld |
|
55 |
|
mulneg12 |
|
56 |
50 54 55
|
syl2anc |
|
57 |
49 48 54
|
subdird |
|
58 |
48 49
|
negsubdi2d |
|
59 |
58
|
oveq1d |
|
60 |
|
oveq2 |
|
61 |
|
eqid |
|
62 |
|
ovex |
|
63 |
60 61 62
|
fvmpt |
|
64 |
47 63
|
syl |
|
65 |
|
simpll |
|
66 |
28
|
ad2antlr |
|
67 |
65 49 66
|
divcan2d |
|
68 |
67
|
oveq1d |
|
69 |
49 51 48 53
|
divassd |
|
70 |
64 68 69
|
3eqtr2d |
|
71 |
|
oveq2 |
|
72 |
|
ovex |
|
73 |
71 61 72
|
fvmpt |
|
74 |
73
|
ad2antlr |
|
75 |
51 48 53
|
divcan2d |
|
76 |
74 75
|
eqtr4d |
|
77 |
70 76
|
oveq12d |
|
78 |
57 59 77
|
3eqtr4d |
|
79 |
51 48 53
|
divnegd |
|
80 |
79
|
oveq2d |
|
81 |
56 78 80
|
3eqtr3d |
|
82 |
81
|
oveq1d |
|
83 |
51
|
negcld |
|
84 |
83 48 53
|
divcld |
|
85 |
|
eldifsni |
|
86 |
85
|
adantl |
|
87 |
48 49 86
|
subne0d |
|
88 |
84 50 87
|
divcan3d |
|
89 |
82 88
|
eqtrd |
|
90 |
89
|
mpteq2dva |
|
91 |
|
difss |
|
92 |
|
resmpt |
|
93 |
91 92
|
ax-mp |
|
94 |
90 93
|
eqtr4di |
|
95 |
94
|
oveq1d |
|
96 |
45 95
|
eqtr4d |
|
97 |
42 96
|
eleqtrd |
|
98 |
11
|
cnfldtopon |
|
99 |
98
|
toponrestid |
|
100 |
|
eqid |
|
101 |
|
ssidd |
|
102 |
7
|
adantr |
|
103 |
|
difssd |
|
104 |
99 11 100 101 102 103
|
eldv |
|
105 |
22 97 104
|
mpbir2and |
|
106 |
|
vex |
|
107 |
|
negex |
|
108 |
106 107
|
breldm |
|
109 |
105 108
|
syl |
|
110 |
9 109
|
eqelssd |
|
111 |
110
|
feq2d |
|
112 |
1 111
|
mpbii |
|
113 |
112
|
ffnd |
|
114 |
|
negex |
|
115 |
114
|
rgenw |
|
116 |
|
eqid |
|
117 |
116
|
fnmpt |
|
118 |
115 117
|
mp1i |
|
119 |
|
ffun |
|
120 |
1 119
|
mp1i |
|
121 |
|
funbrfv |
|
122 |
120 105 121
|
sylc |
|
123 |
|
oveq1 |
|
124 |
123
|
oveq2d |
|
125 |
124
|
negeqd |
|
126 |
125 116 107
|
fvmpt |
|
127 |
126
|
adantl |
|
128 |
122 127
|
eqtr4d |
|
129 |
113 118 128
|
eqfnfvd |
|