Metamath Proof Explorer


Theorem dvres2

Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres , there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like Re ( x ) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvres2 S F : A A S B S F S B B D F B

Proof

Step Hyp Ref Expression
1 relres Rel F S B
2 1 a1i S F : A A S B S Rel F S B
3 eqid TopOpen fld = TopOpen fld
4 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
5 eqid z A x F z F x z x = z A x F z F x z x
6 simp1l S F : A A S B S x B x F S y S
7 simp1r S F : A A S B S x B x F S y F : A
8 simp2l S F : A A S B S x B x F S y A S
9 simp2r S F : A A S B S x B x F S y B S
10 simp3r S F : A A S B S x B x F S y x F S y
11 6 7 8 dvcl S F : A A S B S x B x F S y x F S y y
12 10 11 mpdan S F : A A S B S x B x F S y y
13 simp3l S F : A A S B S x B x F S y x B
14 3 4 5 6 7 8 9 12 10 13 dvres2lem S F : A A S B S x B x F S y x F B B y
15 14 3expia S F : A A S B S x B x F S y x F B B y
16 vex y V
17 16 brresi x F S B y x B x F S y
18 df-br x F S B y x y F S B
19 17 18 bitr3i x B x F S y x y F S B
20 df-br x F B B y x y F B B
21 15 19 20 3imtr3g S F : A A S B S x y F S B x y F B B
22 2 21 relssdv S F : A A S B S F S B B D F B