Metamath Proof Explorer


Theorem dvres3

Description: Restriction of a complex differentiable function to the reals. (Contributed by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion dvres3 S F : A A S dom F S D F S = F S

Proof

Step Hyp Ref Expression
1 reldv Rel F S S
2 recnprss S S
3 2 ad2antrr S F : A A S dom F S
4 simplr S F : A A S dom F F : A
5 simprr S F : A A S dom F S dom F
6 ssidd S F : A A S dom F
7 simprl S F : A A S dom F A
8 6 4 7 dvbss S F : A A S dom F dom F A
9 5 8 sstrd S F : A A S dom F S A
10 4 9 fssresd S F : A A S dom F F S : S
11 ssidd S F : A A S dom F S S
12 3 10 11 dvbss S F : A A S dom F dom F S S S
13 ssdmres S dom F dom F S = S
14 5 13 sylib S F : A A S dom F dom F S = S
15 12 14 sseqtrrd S F : A A S dom F dom F S S dom F S
16 relssres Rel F S S dom F S S dom F S F S S dom F S = S D F S
17 1 15 16 sylancr S F : A A S dom F F S S dom F S = S D F S
18 dvfg S F S S : dom F S S
19 18 ad2antrr S F : A A S dom F F S S : dom F S S
20 19 ffund S F : A A S dom F Fun F S S
21 dvres2 F : A A S F S S D F S
22 6 4 7 3 21 syl22anc S F : A A S dom F F S S D F S
23 funssres Fun F S S F S S D F S F S S dom F S = F S
24 20 22 23 syl2anc S F : A A S dom F F S S dom F S = F S
25 17 24 eqtr3d S F : A A S dom F S D F S = F S