Metamath Proof Explorer


Theorem dvrid

Description: A cancellation law for division. ( divid analog.) (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses unitdvcl.o U = Unit R
unitdvcl.d × ˙ = / r R
dvrid.o 1 ˙ = 1 R
Assertion dvrid R Ring X U X × ˙ X = 1 ˙

Proof

Step Hyp Ref Expression
1 unitdvcl.o U = Unit R
2 unitdvcl.d × ˙ = / r R
3 dvrid.o 1 ˙ = 1 R
4 eqid Base R = Base R
5 4 1 unitcl X U X Base R
6 5 adantl R Ring X U X Base R
7 eqid R = R
8 eqid inv r R = inv r R
9 4 7 1 8 2 dvrval X Base R X U X × ˙ X = X R inv r R X
10 6 9 sylancom R Ring X U X × ˙ X = X R inv r R X
11 1 8 7 3 unitrinv R Ring X U X R inv r R X = 1 ˙
12 10 11 eqtrd R Ring X U X × ˙ X = 1 ˙